hbs2/src/Crypto/Saltine/Class.hs

56 lines
1.8 KiB
Haskell

-- {-# LANGUAGE FlexibleInstances #-}
-- |
-- Module : Crypto.Saltine.Class
-- Copyright : (c) Joseph Abrahamson 2013
-- License : MIT
--
-- Maintainer : me@jspha.com
-- Stability : experimental
-- Portability : non-portable
--
-- Saltine type classes
module Crypto.Saltine.Class (
IsEncoding (..),
IsNonce (..)
) where
import Data.Profunctor
import Data.ByteString (ByteString)
-- | Class for all keys and nonces in Saltine which have a
-- representation as ByteString. 'encoded' is a 'Prism' of
-- type @Prism' ByteString a@ compatible with "Control.Lens" and
-- is automatically deduced.
class IsEncoding a where
encode :: a -> ByteString
decode :: ByteString -> Maybe a
encoded :: (Choice p, Applicative f)
=> p a (f a) -> p ByteString (f ByteString)
encoded = prism' encode decode
{-# INLINE encoded #-}
-- | A generic class for interacting with nonces.
class IsNonce n where
zero :: n
-- ^ Some privileged nonce value.
nudge :: n -> n
-- ^ Some perturbation on nonces such that @n /= nudge n@ with high
-- probability. Since nonces are finite, repeats may happen in
-- particularly small cases, but no nonces in Saltine are so
-- small. This is not guaranteed to be difficult to predict---if a
-- nonce had an `Enum` instance `succ` would be a good
-- implementation excepting that `succ` is partial.
-- Copied over from Control.Lens
prism' :: (Applicative f, Choice p) =>
(a1 -> a) -> (a -> Maybe a2) -> p a2 (f a1) -> p a (f a)
prism' bs sma = prism bs (\s -> maybe (Left s) Right (sma s))
{-# INLINE prism' #-}
prism :: (Applicative f, Choice p) =>
(a2 -> a1) -> (a -> Either a1 a3) -> p a3 (f a2) -> p a (f a1)
prism bt seta = dimap seta (either pure (fmap bt)) . right'
{-# INLINE prism #-}