hbs2/hbs2-core/test/TestUniqProtoId.hs

161 lines
4.5 KiB
Haskell

{-# Language TypeFamilyDependencies #-}
{-# Language FunctionalDependencies #-}
{-# Language AllowAmbiguousTypes #-}
module TestUniqProtoId where
import HasProtocol
import Data.Kind
import GHC.TypeLits
import Data.Proxy
import Data.Map qualified as Map
import Data.Map (Map)
import Control.Monad.Reader
import Data.ByteString (ByteString)
import Data.List qualified as List
import Data.Cache qualified as Cache
import Data.Cache (Cache)
import Control.Concurrent.STM.TChan as Chan
import Control.Concurrent.STM
import Data.Hashable
import Data.Maybe
newtype From a = From (Peer a)
newtype To a = To (Peer a)
class HasPeer proto => Messaging bus proto msg | bus -> proto, bus -> msg where
sendTo :: MonadIO m => bus -> To proto -> From proto -> msg -> m ()
receive :: MonadIO m => bus -> To proto -> m [(From proto, msg)]
data FakeP2P proto msg =
FakeP2P
{
blocking :: Bool
, fakeP2p :: Cache (Peer proto) (TChan (From proto,msg))
}
newFakeP2P :: Bool -> IO (FakeP2P peer msg)
newFakeP2P block = FakeP2P block <$> Cache.newCache Nothing
instance ( (HasPeer proto, Hashable (Peer proto))
) => Messaging (FakeP2P proto msg) proto msg where
sendTo bus (To whom) who msg = liftIO do
chan <- Cache.fetchWithCache (fakeP2p bus) whom $ const newTChanIO
atomically $ Chan.writeTChan chan (who, msg)
receive bus (To me) = liftIO do
readChan =<< Cache.fetchWithCache (fakeP2p bus) me (const newTChanIO)
where
readChan | blocking bus = atomically . (List.singleton <$>) . Chan.readTChan
| otherwise = atomically . (maybeToList <$>) . Chan.tryReadTChan
data AnyProtocol e m = forall p a . ( HasProtocol p a
, KnownNat (ProtocolId a)
, Response p a m
, e ~ Encoded p
) =>
AnyProtocol
{ getProtoId :: Integer
, protoDecode :: Encoded p -> Maybe a
, protoEncode :: a -> Encoded p
, handle :: a -> m ()
}
data PingPong = Ping Int
| Pong Int
type family Encoding a :: Type
data Fake
instance HasPeer Fake where
newtype instance Peer Fake = FakePeer Int
deriving newtype (Hashable)
deriving stock (Eq)
instance HasProtocol Fake PingPong where
type instance ProtocolId PingPong = 1
type instance Encoded Fake = String
decode = undefined
encode = undefined
class Response e p (m :: Type -> Type) where
response :: p -> m ()
makeResponse :: forall a p t m . ( MonadIO m
, Response a p (t m)
, HasProtocol a p
, KnownNat (ProtocolId p)
)
=> (p -> t m ()) -> AnyProtocol (Encoded a) (t m)
makeResponse h = AnyProtocol { getProtoId = natVal (Proxy @(ProtocolId p))
, protoDecode = decode @a
, protoEncode = encode @a
, handle = h
}
data AnyMessage = AnyMessage Integer ByteString
data EngineEnv = forall p bus . (HasPeer p, Messaging bus p AnyMessage) =>
EngineEnv
{ peer :: Maybe (Peer p)
, bus :: bus
}
newtype EngineM m a = EngineM { fromEngine :: ReaderT EngineEnv m a }
deriving ( Functor, Applicative, Monad, MonadTrans, MonadIO )
runEngineM :: EngineEnv -> EngineM m a -> m a
runEngineM e f = runReaderT (fromEngine f) e
instance (Monad m, HasProtocol e p) => Response e p (EngineM m) where
response resp = do
-- TODO: get bus
-- TODO: encode
-- TODO: sendTo
undefined
pingPongHandler :: forall a m . (MonadIO m, Response a PingPong m) => PingPong -> m ()
pingPongHandler =
\case
Ping c -> liftIO (print "effect: PING") >> response @a @PingPong (Pong c)
Pong _ -> liftIO (print "effect: PONG")
testUniqiProtoId :: IO ()
testUniqiProtoId = do
fake <- newFakeP2P True
let env = EngineEnv @Fake Nothing fake
let pingpong = makeResponse pingPongHandler
let decoders = mempty :: Map Integer (AnyProtocol String (EngineM IO))
let dec = Map.insert 1 pingpong decoders
-- TODO: GET MESSAGE
-- TODO: GET RECIPIENT
-- TODO: GET PROTO-ID FROM MESSAGE
let message = "" :: Encoded Fake
-- FIXME: dispatcher!
case Map.lookup 1 dec of
Just (AnyProtocol {protoDecode = decoder, handle = h}) -> maybe (pure ()) (runEngineM env . h) (decoder message)
Nothing -> pure ()
pure ()