kepka/Telegram/SourceFiles/ui/animation.h

719 lines
19 KiB
C++

//
// This file is part of Kepka,
// an unofficial desktop version of Telegram messaging app,
// see https://github.com/procxx/kepka
//
// Kepka is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// It is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// In addition, as a special exception, the copyright holders give permission
// to link the code of portions of this program with the OpenSSL library.
//
// Full license: https://github.com/procxx/kepka/blob/master/LICENSE
// Copyright (c) 2014-2017 John Preston, https://desktop.telegram.org
// Copyright (c) 2017- Kepka Contributors, https://github.com/procxx
//
#pragma once
#define _USE_MATH_DEFINES // for M_PI in MSVC (GCC and Clang has it as extension)
#include <QBrush>
#include <QColor>
#include <QPainterPath>
#include <QPen>
#include <QTimer>
#include <cmath>
#include <cstdint>
#include "core/basic_types.h"
#include "core/utils.h"
#include "mtproto/facade.h"
#include "style/style_core_types.h"
namespace Media {
namespace Clip {
class Reader;
class ReaderPointer {
public:
ReaderPointer(std::nullptr_t = nullptr) {}
explicit ReaderPointer(Reader *pointer)
: _pointer(pointer) {}
ReaderPointer(const ReaderPointer &other) = delete;
ReaderPointer &operator=(const ReaderPointer &other) = delete;
ReaderPointer(ReaderPointer &&other)
: _pointer(base::take(other._pointer)) {}
ReaderPointer &operator=(ReaderPointer &&other) {
swap(other);
return *this;
}
void swap(ReaderPointer &other) {
qSwap(_pointer, other._pointer);
}
Reader *get() const {
return valid() ? _pointer : nullptr;
}
Reader *operator->() const {
return get();
}
void setBad() {
reset();
_pointer = BadPointer;
}
void reset() {
ReaderPointer temp;
swap(temp);
}
bool isBad() const {
return (_pointer == BadPointer);
}
bool valid() const {
return _pointer && !isBad();
}
explicit operator bool() const {
return valid();
}
static inline ReaderPointer Bad() {
ReaderPointer result;
result.setBad();
return result;
}
~ReaderPointer();
private:
Reader *_pointer = nullptr;
static Reader *const BadPointer;
};
class Manager;
enum Notification {
NotificationReinit,
NotificationRepaint,
};
} // namespace Clip
} // namespace Media
namespace anim {
using transition = Fn<double(double delta, double dt)>;
extern transition linear;
extern transition sineInOut;
extern transition halfSine;
extern transition easeOutBack;
extern transition easeInCirc;
extern transition easeOutCirc;
extern transition easeInCubic;
extern transition easeOutCubic;
extern transition easeInQuint;
extern transition easeOutQuint;
inline transition bumpy(double bump) {
auto dt0 = (bump - sqrt(bump * (bump - 1.)));
auto k = (1 / (2 * dt0 - 1));
return [bump, dt0, k](double delta, double dt) { return delta * (bump - k * (dt - dt0) * (dt - dt0)); };
}
// Basic animated value.
class value {
public:
using ValueType = double;
value() = default;
value(double from)
: _cur(from)
, _from(from) {}
value(double from, double to)
: _cur(from)
, _from(from)
, _delta(to - from) {}
void start(double to) {
_from = _cur;
_delta = to - _from;
}
void restart() {
_delta = _from + _delta - _cur;
_from = _cur;
}
double from() const {
return _from;
}
double current() const {
return _cur;
}
double to() const {
return _from + _delta;
}
void add(double delta) {
_from += delta;
_cur += delta;
}
value &update(double dt, transition func) {
_cur = _from + func(_delta, dt);
return *this;
}
void finish() {
_cur = _from + _delta;
_from = _cur;
_delta = 0;
}
private:
double _cur = 0.;
double _from = 0.;
double _delta = 0.;
};
void startManager();
void stopManager();
void registerClipManager(Media::Clip::Manager *manager);
FORCE_INLINE int interpolate(int a, int b, double b_ratio) {
return qRound(a + double(b - a) * b_ratio);
}
#ifdef ARCH_CPU_32_BITS
#define SHIFTED_USE_32BIT
#endif // ARCH_CPU_32_BITS
#ifdef SHIFTED_USE_32BIT
using ShiftedMultiplier = quint32;
struct Shifted {
Shifted() = default;
Shifted(quint32 low, quint32 high)
: low(low)
, high(high) {}
quint32 low = 0;
quint32 high = 0;
};
FORCE_INLINE Shifted operator+(Shifted a, Shifted b) {
return Shifted(a.low + b.low, a.high + b.high);
}
FORCE_INLINE Shifted operator*(Shifted shifted, ShiftedMultiplier multiplier) {
return Shifted(shifted.low * multiplier, shifted.high * multiplier);
}
FORCE_INLINE Shifted operator*(ShiftedMultiplier multiplier, Shifted shifted) {
return Shifted(shifted.low * multiplier, shifted.high * multiplier);
}
FORCE_INLINE Shifted shifted(quint32 components) {
return Shifted((components & 0x000000FFU) | ((components & 0x0000FF00U) << 8),
((components & 0x00FF0000U) >> 16) | ((components & 0xFF000000U) >> 8));
}
FORCE_INLINE quint32 unshifted(Shifted components) {
return ((components.low & 0x0000FF00U) >> 8) | ((components.low & 0xFF000000U) >> 16) |
((components.high & 0x0000FF00U) << 8) | (components.high & 0xFF000000U);
}
FORCE_INLINE Shifted reshifted(Shifted components) {
return Shifted((components.low >> 8) & 0x00FF00FFU, (components.high >> 8) & 0x00FF00FFU);
}
FORCE_INLINE Shifted shifted(QColor color) {
// Make it premultiplied.
auto alpha = static_cast<quint32>((color.alpha() & 0xFF) + 1);
auto components =
Shifted(static_cast<quint32>(color.blue() & 0xFF) | (static_cast<quint32>(color.green() & 0xFF) << 16),
static_cast<quint32>(color.red() & 0xFF) | (static_cast<quint32>(255) << 16));
return reshifted(components * alpha);
}
FORCE_INLINE quint32 getPremultiplied(QColor color) {
// Make it premultiplied.
auto alpha = static_cast<quint32>((color.alpha() & 0xFF) + 1);
auto components =
Shifted(static_cast<quint32>(color.blue() & 0xFF) | (static_cast<quint32>(color.green() & 0xFF) << 16),
static_cast<quint32>(color.red() & 0xFF) | (static_cast<quint32>(255) << 16));
return unshifted(components * alpha);
}
FORCE_INLINE quint32 getAlpha(Shifted components) {
return (components.high & 0x00FF0000U) >> 16;
}
FORCE_INLINE Shifted non_premultiplied(QColor color) {
return Shifted(static_cast<quint32>(color.blue() & 0xFF) | (static_cast<quint32>(color.green() & 0xFF) << 16),
static_cast<quint32>(color.red() & 0xFF) | (static_cast<quint32>(color.alpha() & 0xFF) << 16));
}
FORCE_INLINE QColor color(QColor a, QColor b, double b_ratio) {
auto bOpacity = snap(interpolate(0, 255, b_ratio), 0, 255) + 1;
auto aOpacity = (256 - bOpacity);
auto components = (non_premultiplied(a) * aOpacity + non_premultiplied(b) * bOpacity);
return {
static_cast<int>((components.high >> 8) & 0xFF),
static_cast<int>((components.low >> 24) & 0xFF),
static_cast<int>((components.low >> 8) & 0xFF),
static_cast<int>((components.high >> 24) & 0xFF),
};
}
#else // SHIFTED_USE_32BIT
using ShiftedMultiplier = quint64;
struct Shifted {
Shifted() = default;
Shifted(quint32 value)
: value(value) {}
Shifted(quint64 value)
: value(value) {}
quint64 value = 0;
};
FORCE_INLINE Shifted operator+(Shifted a, Shifted b) {
return Shifted(a.value + b.value);
}
FORCE_INLINE Shifted operator*(Shifted shifted, ShiftedMultiplier multiplier) {
return Shifted(shifted.value * multiplier);
}
FORCE_INLINE Shifted operator*(ShiftedMultiplier multiplier, Shifted shifted) {
return Shifted(shifted.value * multiplier);
}
FORCE_INLINE Shifted shifted(quint32 components) {
auto wide = static_cast<quint64>(components);
return (wide & Q_UINT64_C(0x00000000000000FF)) | ((wide & Q_UINT64_C(0x000000000000FF00)) << 8) |
((wide & Q_UINT64_C(0x0000000000FF0000)) << 16) | ((wide & Q_UINT64_C(0x00000000FF000000)) << 24);
}
FORCE_INLINE quint32 unshifted(Shifted components) {
return static_cast<quint32>((components.value & Q_UINT64_C(0x000000000000FF00)) >> 8) |
static_cast<quint32>((components.value & Q_UINT64_C(0x00000000FF000000)) >> 16) |
static_cast<quint32>((components.value & Q_UINT64_C(0x0000FF0000000000)) >> 24) |
static_cast<quint32>((components.value & Q_UINT64_C(0xFF00000000000000)) >> 32);
}
FORCE_INLINE Shifted reshifted(Shifted components) {
return (components.value >> 8) & Q_UINT64_C(0x00FF00FF00FF00FF);
}
FORCE_INLINE Shifted shifted(QColor color) {
// Make it premultiplied.
auto alpha = static_cast<quint64>((color.alpha() & 0xFF) + 1);
auto components = static_cast<quint64>(color.blue() & 0xFF) | (static_cast<quint64>(color.green() & 0xFF) << 16) |
(static_cast<quint64>(color.red() & 0xFF) << 32) | (static_cast<quint64>(255) << 48);
return reshifted(components * alpha);
}
FORCE_INLINE quint32 getPremultiplied(QColor color) {
// Make it premultiplied.
auto alpha = static_cast<quint64>((color.alpha() & 0xFF) + 1);
auto components = static_cast<quint64>(color.blue() & 0xFF) | (static_cast<quint64>(color.green() & 0xFF) << 16) |
(static_cast<quint64>(color.red() & 0xFF) << 32) | (static_cast<quint64>(255) << 48);
return unshifted(components * alpha);
}
FORCE_INLINE quint32 getAlpha(Shifted components) {
return (components.value & 0x00FF000000000000ULL) >> 48;
}
FORCE_INLINE Shifted non_premultiplied(QColor color) {
return static_cast<quint64>(color.blue() & 0xFF) | (static_cast<quint64>(color.green() & 0xFF) << 16) |
(static_cast<quint64>(color.red() & 0xFF) << 32) | (static_cast<quint64>(color.alpha() & 0xFF) << 48);
}
FORCE_INLINE QColor color(QColor a, QColor b, double b_ratio) {
auto bOpacity = snap(interpolate(0, 255, b_ratio), 0, 255) + 1;
auto aOpacity = (256 - bOpacity);
auto components = (non_premultiplied(a) * aOpacity + non_premultiplied(b) * bOpacity);
return {
static_cast<int>((components.value >> 40) & 0xFF),
static_cast<int>((components.value >> 24) & 0xFF),
static_cast<int>((components.value >> 8) & 0xFF),
static_cast<int>((components.value >> 56) & 0xFF),
};
}
#endif // SHIFTED_USE_32BIT
FORCE_INLINE QColor color(style::color a, QColor b, double b_ratio) {
return color(a->c, b, b_ratio);
}
FORCE_INLINE QColor color(QColor a, style::color b, double b_ratio) {
return color(a, b->c, b_ratio);
}
FORCE_INLINE QColor color(style::color a, style::color b, double b_ratio) {
return color(a->c, b->c, b_ratio);
}
FORCE_INLINE QPen pen(QColor a, QColor b, double b_ratio) {
return color(a, b, b_ratio);
}
FORCE_INLINE QPen pen(style::color a, QColor b, double b_ratio) {
return (b_ratio > 0) ? pen(a->c, b, b_ratio) : a;
}
FORCE_INLINE QPen pen(QColor a, style::color b, double b_ratio) {
return (b_ratio < 1) ? pen(a, b->c, b_ratio) : b;
}
FORCE_INLINE QPen pen(style::color a, style::color b, double b_ratio) {
return (b_ratio > 0) ? ((b_ratio < 1) ? pen(a->c, b->c, b_ratio) : b) : a;
}
FORCE_INLINE QBrush brush(QColor a, QColor b, double b_ratio) {
return color(a, b, b_ratio);
}
FORCE_INLINE QBrush brush(style::color a, QColor b, double b_ratio) {
return (b_ratio > 0) ? brush(a->c, b, b_ratio) : a;
}
FORCE_INLINE QBrush brush(QColor a, style::color b, double b_ratio) {
return (b_ratio < 1) ? brush(a, b->c, b_ratio) : b;
}
FORCE_INLINE QBrush brush(style::color a, style::color b, double b_ratio) {
return (b_ratio > 0) ? ((b_ratio < 1) ? brush(a->c, b->c, b_ratio) : b) : a;
}
template <int N> QPainterPath interpolate(QPointF (&from)[N], QPointF (&to)[N], double k) {
static_assert(N > 1, "Wrong points count in path!");
auto from_coef = 1. - k, to_coef = k;
QPainterPath result;
auto x = from[0].x() * from_coef + to[0].x() * to_coef;
auto y = from[0].y() * from_coef + to[0].y() * to_coef;
result.moveTo(x, y);
for (int i = 1; i != N; ++i) {
result.lineTo(from[i].x() * from_coef + to[i].x() * to_coef, from[i].y() * from_coef + to[i].y() * to_coef);
}
result.lineTo(x, y);
return result;
}
template <int N> QPainterPath path(QPointF (&from)[N]) {
static_assert(N > 1, "Wrong points count in path!");
QPainterPath result;
auto x = from[0].x();
auto y = from[0].y();
result.moveTo(x, y);
for (int i = 1; i != N; ++i) {
result.lineTo(from[i].x(), from[i].y());
}
result.lineTo(x, y);
return result;
}
bool Disabled();
void SetDisabled(bool disabled);
} // namespace anim
class BasicAnimation;
class AnimationImplementation {
public:
virtual void start() {}
virtual void step(BasicAnimation *a, TimeMs ms, bool timer) = 0;
virtual ~AnimationImplementation() {}
};
class AnimationCallbacks {
public:
AnimationCallbacks(AnimationImplementation *implementation)
: _implementation(implementation) {}
AnimationCallbacks(const AnimationCallbacks &other) = delete;
AnimationCallbacks &operator=(const AnimationCallbacks &other) = delete;
AnimationCallbacks(AnimationCallbacks &&other)
: _implementation(other._implementation) {
other._implementation = nullptr;
}
AnimationCallbacks &operator=(AnimationCallbacks &&other) {
std::swap(_implementation, other._implementation);
return *this;
}
void start() {
_implementation->start();
}
void step(BasicAnimation *a, TimeMs ms, bool timer) {
_implementation->step(a, ms, timer);
}
~AnimationCallbacks() {
delete base::take(_implementation);
}
private:
AnimationImplementation *_implementation;
};
class BasicAnimation {
public:
BasicAnimation(AnimationCallbacks &&callbacks)
: _callbacks(std::move(callbacks))
, _animating(false) {}
void start();
void stop();
void step(TimeMs ms, bool timer = false) {
_callbacks.step(this, ms, timer);
}
void step() {
step(getms(), false);
}
bool animating() const {
return _animating;
}
~BasicAnimation() {
if (_animating) stop();
}
private:
AnimationCallbacks _callbacks;
bool _animating;
};
template <typename Type> class AnimationCallbacksRelative : public AnimationImplementation {
public:
typedef void (Type::*Method)(double, bool);
AnimationCallbacksRelative(Type *obj, Method method)
: _obj(obj)
, _method(method) {}
void start() {
_started = getms();
}
void step(BasicAnimation *a, TimeMs ms, bool timer) {
(_obj->*_method)(qMax(ms - _started, TimeMs(0)), timer);
}
private:
TimeMs _started = 0;
Type *_obj = nullptr;
Method _method = nullptr;
};
template <typename Type>
AnimationCallbacks animation(Type *obj, typename AnimationCallbacksRelative<Type>::Method method) {
return AnimationCallbacks(new AnimationCallbacksRelative<Type>(obj, method));
}
template <typename Type> class AnimationCallbacksAbsolute : public AnimationImplementation {
public:
typedef void (Type::*Method)(TimeMs, bool);
AnimationCallbacksAbsolute(Type *obj, Method method)
: _obj(obj)
, _method(method) {}
void step(BasicAnimation *a, TimeMs ms, bool timer) {
(_obj->*_method)(ms, timer);
}
private:
Type *_obj = nullptr;
Method _method = nullptr;
};
template <typename Type>
AnimationCallbacks animation(Type *obj, typename AnimationCallbacksAbsolute<Type>::Method method) {
return AnimationCallbacks(new AnimationCallbacksAbsolute<Type>(obj, method));
}
template <typename Type, typename Param> class AnimationCallbacksRelativeWithParam : public AnimationImplementation {
public:
typedef void (Type::*Method)(Param, double, bool);
AnimationCallbacksRelativeWithParam(Param param, Type *obj, Method method)
: _param(param)
, _obj(obj)
, _method(method) {}
void start() {
_started = getms();
}
void step(BasicAnimation *a, TimeMs ms, bool timer) {
(_obj->*_method)(_param, qMax(ms - _started, TimeMs(0)), timer);
}
private:
TimeMs _started = 0;
Param _param;
Type *_obj = nullptr;
Method _method = nullptr;
};
template <typename Type, typename Param>
AnimationCallbacks animation(Param param, Type *obj,
typename AnimationCallbacksRelativeWithParam<Type, Param>::Method method) {
return AnimationCallbacks(new AnimationCallbacksRelativeWithParam<Type, Param>(param, obj, method));
}
template <typename Type, typename Param> class AnimationCallbacksAbsoluteWithParam : public AnimationImplementation {
public:
typedef void (Type::*Method)(Param, TimeMs, bool);
AnimationCallbacksAbsoluteWithParam(Param param, Type *obj, Method method)
: _param(param)
, _obj(obj)
, _method(method) {}
void step(BasicAnimation *a, TimeMs ms, bool timer) {
(_obj->*_method)(_param, ms, timer);
}
private:
Param _param;
Type *_obj = nullptr;
Method _method = nullptr;
};
template <typename Type, typename Param>
AnimationCallbacks animation(Param param, Type *obj,
typename AnimationCallbacksAbsoluteWithParam<Type, Param>::Method method) {
return AnimationCallbacks(new AnimationCallbacksAbsoluteWithParam<Type, Param>(param, obj, method));
}
class Animation {
public:
void step(TimeMs ms) {
if (_data) {
_data->a_animation.step(ms);
if (_data && !_data->a_animation.animating()) {
_data.reset();
}
}
}
bool animating() const {
if (_data) {
if (_data->a_animation.animating()) {
return true;
}
_data.reset();
}
return false;
}
bool animating(TimeMs ms) {
step(ms);
return animating();
}
double current() const {
Assert(_data != nullptr);
return _data->value.current();
}
double current(double def) const {
return animating() ? current() : def;
}
double current(TimeMs ms, double def) {
return animating(ms) ? current() : def;
}
static constexpr auto kLongAnimationDuration = 1000;
template <typename Lambda>
void start(Lambda &&updateCallback, double from, double to, double duration,
anim::transition transition = anim::linear) {
auto isLong = (duration >= kLongAnimationDuration);
if (_data) {
if (!isLong) {
_data->pause.restart();
}
} else {
_data = std::make_unique<Data>(from, std::forward<Lambda>(updateCallback));
}
if (isLong) {
_data->pause.release();
}
_data->value.start(to);
_data->duration = duration;
_data->transition = transition;
_data->a_animation.start();
}
void finish() {
if (_data) {
_data->value.finish();
_data->a_animation.stop();
_data.reset();
}
}
template <typename Lambda> void setUpdateCallback(Lambda &&updateCallback) {
if (_data) {
_data->updateCallback = std::forward<Lambda>(updateCallback);
}
}
private:
struct Data {
template <typename Lambda>
Data(double from, Lambda updateCallback)
: value(from, from)
, a_animation(animation(this, &Data::step))
, updateCallback(std::move(updateCallback)) {}
void step(double ms, bool timer) {
auto dt = (ms >= duration || anim::Disabled()) ? 1. : (ms / duration);
if (dt >= 1) {
value.finish();
a_animation.stop();
pause.release();
} else {
value.update(dt, transition);
}
updateCallback();
}
anim::value value;
BasicAnimation a_animation;
Fn<void()> updateCallback;
double duration = 0.;
anim::transition transition = anim::linear;
MTP::PauseHolder pause;
};
mutable std::unique_ptr<Data> _data;
};
class AnimationManager : public QObject {
Q_OBJECT
public:
AnimationManager();
void start(BasicAnimation *obj);
void stop(BasicAnimation *obj);
public slots:
void timeout();
void clipCallback(Media::Clip::Reader *reader, qint32 threadIndex, qint32 notification);
private:
using AnimatingObjects = std::set<BasicAnimation *>;
AnimatingObjects _objects, _starting, _stopping;
QTimer _timer;
bool _iterating;
};