kepka/Telegram/SourceFiles/mtproto/rsa_public_key.cpp

224 lines
6.6 KiB
C++

//
// This file is part of Kepka,
// an unofficial desktop version of Telegram messaging app,
// see https://github.com/procxx/kepka
//
// Kepka is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// It is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// In addition, as a special exception, the copyright holders give permission
// to link the code of portions of this program with the OpenSSL library.
//
// Full license: https://github.com/procxx/kepka/blob/master/LICENSE
// Copyright (c) 2014-2017 John Preston, https://desktop.telegram.org
// Copyright (c) 2017- Kepka Contributors, https://github.com/procxx
//
#include "mtproto/rsa_public_key.h"
#include "base/openssl_help.h"
#include "mtproto/core_types.h"
#include <openssl/bio.h>
#include <openssl/err.h>
#include <openssl/pem.h>
#include <openssl/rsa.h>
using std::string;
namespace MTP {
namespace {
#if OPENSSL_VERSION_NUMBER < 0x10100000L || (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x2070000fL)
// This is a key setter for compatibility with OpenSSL 1.0
int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) {
if ((r->n == nullptr && n == nullptr) || (r->e == nullptr && e == nullptr)) {
return 0;
}
if (n != nullptr) {
BN_free(r->n);
r->n = n;
}
if (e != nullptr) {
BN_free(r->e);
r->e = e;
}
if (d != nullptr) {
BN_free(r->d);
r->d = d;
}
return 1;
}
// This is a key getter for compatibility with OpenSSL 1.0
void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) {
if (n != nullptr) {
*n = r->n;
}
if (e != nullptr) {
*e = r->e;
}
if (d != nullptr) {
*d = r->d;
}
}
#endif
} // namespace
namespace internal {
class RSAPublicKey::Private {
public:
Private(base::const_byte_span key)
: _rsa(PEM_read_bio_RSAPublicKey(BIO_new_mem_buf(const_cast<gsl::byte *>(key.data()), key.size()), 0, 0, 0)) {
if (_rsa) {
computeFingerprint();
}
}
Private(base::const_byte_span nBytes, base::const_byte_span eBytes)
: _rsa(RSA_new()) {
if (_rsa) {
auto n = openssl::BigNum(nBytes).takeRaw();
auto e = openssl::BigNum(eBytes).takeRaw();
auto valid = (n != nullptr) && (e != nullptr);
// We still pass both values to RSA_set0_key() so that even
// if only one of them is valid RSA would take ownership of it.
if (!RSA_set0_key(_rsa, n, e, nullptr) || !valid) {
RSA_free(base::take(_rsa));
} else {
computeFingerprint();
}
}
}
base::byte_vector getN() const {
Expects(isValid());
const BIGNUM *n;
RSA_get0_key(_rsa, &n, nullptr, nullptr);
return toBytes(n);
}
base::byte_vector getE() const {
Expects(isValid());
const BIGNUM *e;
RSA_get0_key(_rsa, nullptr, &e, nullptr);
return toBytes(e);
}
quint64 getFingerPrint() const {
return _fingerprint;
}
bool isValid() const {
return _rsa != nullptr;
}
base::byte_vector encrypt(base::const_byte_span data) const {
Expects(isValid());
constexpr auto kEncryptSize = 256;
auto result = base::byte_vector(kEncryptSize, gsl::byte{});
auto res = RSA_public_encrypt(kEncryptSize, reinterpret_cast<const unsigned char *>(data.data()),
reinterpret_cast<unsigned char *>(result.data()), _rsa, RSA_NO_PADDING);
if (res < 0 || res > kEncryptSize) {
ERR_load_crypto_strings();
LOG(("RSA Error: RSA_public_encrypt failed, key fp: %1, result: %2, error: %3")
.arg(getFingerPrint())
.arg(res)
.arg(ERR_error_string(ERR_get_error(), 0)));
return base::byte_vector();
} else if (auto zeroBytes = kEncryptSize - res) {
auto resultBytes = gsl::make_span(result);
base::move_bytes(resultBytes.subspan(zeroBytes, res), resultBytes.subspan(0, res));
base::set_bytes(resultBytes.subspan(0, zeroBytes), gsl::byte{});
}
return result;
}
base::byte_vector decrypt(base::const_byte_span data) const {
Expects(isValid());
constexpr auto kDecryptSize = 256;
auto result = base::byte_vector(kDecryptSize, gsl::byte{});
auto res = RSA_public_decrypt(kDecryptSize, reinterpret_cast<const unsigned char *>(data.data()),
reinterpret_cast<unsigned char *>(result.data()), _rsa, RSA_NO_PADDING);
if (res < 0 || res > kDecryptSize) {
ERR_load_crypto_strings();
LOG(("RSA Error: RSA_public_encrypt failed, key fp: %1, result: %2, error: %3")
.arg(getFingerPrint())
.arg(res)
.arg(ERR_error_string(ERR_get_error(), 0)));
return base::byte_vector();
} else if (auto zeroBytes = kDecryptSize - res) {
auto resultBytes = gsl::make_span(result);
base::move_bytes(resultBytes.subspan(zeroBytes - res, res), resultBytes.subspan(0, res));
base::set_bytes(resultBytes.subspan(0, zeroBytes - res), gsl::byte{});
}
return result;
}
~Private() {
RSA_free(_rsa);
}
private:
void computeFingerprint() {
Expects(isValid());
const BIGNUM *n, *e;
mtpBuffer string;
RSA_get0_key(_rsa, &n, &e, nullptr);
MTP_bytes(toBytes(n)).write(string);
MTP_bytes(toBytes(e)).write(string);
uchar sha1Buffer[20];
_fingerprint = *(quint64 *)(hashSha1(&string[0], string.size() * sizeof(mtpPrime), sha1Buffer) + 3);
}
static base::byte_vector toBytes(const BIGNUM *number) {
auto size = BN_num_bytes(number);
auto result = base::byte_vector(size, gsl::byte{});
BN_bn2bin(number, reinterpret_cast<unsigned char *>(result.data()));
return result;
}
RSA *_rsa = nullptr;
quint64 _fingerprint = 0;
};
RSAPublicKey::RSAPublicKey(base::const_byte_span key)
: _private(std::make_shared<Private>(key)) {}
RSAPublicKey::RSAPublicKey(base::const_byte_span nBytes, base::const_byte_span eBytes)
: _private(std::make_shared<Private>(nBytes, eBytes)) {}
bool RSAPublicKey::isValid() const {
return _private && _private->isValid();
}
quint64 RSAPublicKey::getFingerPrint() const {
Expects(isValid());
return _private->getFingerPrint();
}
base::byte_vector RSAPublicKey::getN() const {
Expects(isValid());
return _private->getN();
}
base::byte_vector RSAPublicKey::getE() const {
Expects(isValid());
return _private->getE();
}
base::byte_vector RSAPublicKey::encrypt(base::const_byte_span data) const {
Expects(isValid());
return _private->encrypt(data);
}
base::byte_vector RSAPublicKey::decrypt(base::const_byte_span data) const {
Expects(isValid());
return _private->decrypt(data);
}
} // namespace internal
} // namespace MTP