Use std::function for base::lambda implementation.

(cherry picked from commit 101d4f6)
This commit is contained in:
John Preston 2017-10-27 18:37:27 +03:00 committed by Alex
parent 9f1896c680
commit f488d5f9c1
5 changed files with 279 additions and 60 deletions

View File

@ -207,7 +207,7 @@ bool loggedOut() {
void logOut() {
if (auto mtproto = Messenger::Instance().mtp()) {
mtproto->logout(rpcDone(&loggedOut), rpcFail(&loggedOut));
mtproto->logout(rpcDone([] { return loggedOut(); }), rpcFail([] { return loggedOut(); }));
} else {
// We log out because we've forgotten passcode.
// So we just start mtproto from scratch.

View File

@ -23,6 +23,29 @@ Copyright (c) 2014-2017 John Preston, https://desktop.telegram.org
#include <cstddef> // std::max_align_t
#include <memory>
#ifndef CUSTOM_LAMBDA_WRAP
#include "base/unique_function.h"
#include <functional>
namespace base {
template <typename Function> using lambda = std::function<Function>;
template <typename Function> using lambda_once = unique_function<Function>;
namespace lambda_internal {
template <typename Lambda> struct lambda_call_type { using type = decltype(&Lambda::operator()); };
} // namespace lambda_internal
template <typename Lambda> using lambda_call_type_t = typename lambda_internal::lambda_call_type<Lambda>::type;
} // namespace base
#else // CUSTOM_LAMBDA_WRAP
#ifndef Assert
#define LambdaAssertDefined
#define Assert(v) ((v) ? ((void)0) : std::abort())
@ -63,9 +86,6 @@ template <typename Lambda> struct type_helper {
template <typename Lambda> using lambda_type = typename lambda_internal::type_helper<std::decay_t<Lambda>>::type;
template <typename Lambda>
constexpr bool lambda_is_mutable = lambda_internal::type_helper<std::decay_t<Lambda>>::is_mutable;
namespace lambda_internal {
constexpr auto kFullStorageSize = 32U;
@ -416,3 +436,5 @@ public:
#ifdef LambdaUnexpectedDefined
#undef Unexpected
#endif // LambdaUnexpectedDefined
#endif // CUSTOM_LAMBDA_WRAP

View File

@ -31,8 +31,6 @@ namespace lambda_internal {
template <int N, typename Lambda> class guard_data {
public:
using return_type = typename lambda_type<Lambda>::return_type;
template <typename... PointersAndLambda>
inline guard_data(PointersAndLambda &&... qobjectsAndLambda)
: _lambda(init(_pointers, std::forward<PointersAndLambda>(qobjectsAndLambda)...)) {}
@ -44,7 +42,8 @@ public:
}
}
template <typename... Args> inline return_type operator()(Args &&... args) {
template <typename... Args, typename return_type = decltype(std::declval<Lambda>()(std::declval<Args>()...))>
inline auto operator()(Args &&... args) {
for (int i = 0; i != N; ++i) {
if (!_pointers[i]) {
return return_type();
@ -53,7 +52,8 @@ public:
return _lambda(std::forward<Args>(args)...);
}
template <typename... Args> inline return_type operator()(Args &&... args) const {
template <typename... Args, typename return_type = decltype(std::declval<Lambda>()(std::declval<Args>()...))>
inline auto operator()(Args &&... args) const {
for (int i = 0; i != N; ++i) {
if (!_pointers[i]) {
return return_type();
@ -73,13 +73,15 @@ private:
}
QPointer<QObject> _pointers[N];
Lambda _lambda;
mutable Lambda _lambda;
};
template <int N, typename Lambda> struct lambda_call_type<guard_data<N, Lambda>> {
using type = lambda_call_type_t<Lambda>;
};
template <int N, typename Lambda> class guard {
public:
using return_type = typename lambda_type<Lambda>::return_type;
template <typename Pointer, typename Other, typename... PointersAndLambda>
inline guard(Pointer &&qobject, Other &&other, PointersAndLambda &&... qobjectsAndLambda)
: _data(std::make_unique<guard_data<N, Lambda>>(std::forward<Pointer>(qobject), std::forward<Other>(other),
@ -103,11 +105,13 @@ public:
return *this;
}
template <typename... Args> inline return_type operator()(Args &&... args) {
template <typename... Args, typename = decltype(std::declval<Lambda>()(std::declval<Args>()...))>
inline decltype(auto) operator()(Args &&... args) {
return (*_data)(std::forward<Args>(args)...);
}
template <typename... Args> inline return_type operator()(Args &&... args) const {
template <typename... Args, typename = decltype(std::declval<Lambda>()(std::declval<Args>()...))>
inline decltype(auto) operator()(Args &&... args) const {
return (*_data)(std::forward<Args>(args)...);
}
@ -119,6 +123,10 @@ private:
mutable std::unique_ptr<guard_data<N, Lambda>> _data;
};
template <int N, typename Lambda> struct lambda_call_type<guard<N, Lambda>> {
using type = lambda_call_type_t<Lambda>;
};
template <int N, int K, typename... PointersAndLambda> struct guard_type;
template <int N, int K, typename Pointer, typename... PointersAndLambda>
@ -126,7 +134,7 @@ struct guard_type<N, K, Pointer, PointersAndLambda...> {
using type = typename guard_type<N, K - 1, PointersAndLambda...>::type;
};
template <int N, typename Lambda> struct guard_type<N, 0, Lambda> { using type = guard<N, Lambda>; };
template <int N, typename Lambda> struct guard_type<N, 0, Lambda> { using type = guard<N, std::decay_t<Lambda>>; };
template <typename... PointersAndLambda> struct guard_type_helper {
static constexpr int N = sizeof...(PointersAndLambda);
@ -135,11 +143,6 @@ template <typename... PointersAndLambda> struct guard_type_helper {
template <typename... PointersAndLambda> using guard_t = typename guard_type_helper<PointersAndLambda...>::type;
template <int N, typename Lambda> struct type_helper<guard<N, Lambda>> {
using type = typename type_helper<Lambda>::type;
static constexpr auto is_mutable = type_helper<Lambda>::is_mutable;
};
} // namespace lambda_internal
template <typename... PointersAndLambda>

View File

@ -0,0 +1,148 @@
/*
This file is part of Telegram Desktop,
the official desktop version of Telegram messaging app, see https://telegram.org
Telegram Desktop is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
It is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
In addition, as a special exception, the copyright holders give permission
to link the code of portions of this program with the OpenSSL library.
Full license: https://github.com/telegramdesktop/tdesktop/blob/master/LICENSE
Copyright (c) 2014-2017 John Preston, https://desktop.telegram.org
*/
#pragma once
#include <functional>
#ifndef Unexpected
#define Unexpected(message) std::abort()
#define UniqueFunctionUnexpected
#endif // Unexpected
namespace base {
namespace details {
template <typename Callable> class moveable_callable_wrap {
public:
static_assert(std::is_move_constructible_v<Callable>, "Should be at least moveable.");
moveable_callable_wrap(Callable &&other)
: _value(std::move(other)) {}
moveable_callable_wrap &operator=(Callable &&other) {
_value = std::move(other);
return *this;
}
moveable_callable_wrap(moveable_callable_wrap &&other)
: _value(std::move(other._value)) {}
moveable_callable_wrap(const moveable_callable_wrap &other)
: _value(fail_construct()) {}
moveable_callable_wrap &operator=(moveable_callable_wrap &&other) {
_value = std::move(other._value);
return *this;
}
moveable_callable_wrap &operator=(const moveable_callable_wrap &other) {
return fail_assign();
}
template <typename... Args> decltype(auto) operator()(Args &&... args) const {
return _value(std::forward<Args>(args)...);
}
private:
[[noreturn]] Callable fail_construct() {
Unexpected("Attempt to copy-construct a move-only type.");
}[[noreturn]] moveable_callable_wrap &fail_assign() {
Unexpected("Attempt to copy-assign a move-only type.");
}
mutable Callable _value;
};
} // namespace details
template <typename Function> class unique_function;
template <typename Return, typename... Args> class unique_function<Return(Args...)> final {
public:
unique_function(std::nullptr_t = nullptr) noexcept {}
unique_function(const unique_function &other) = delete;
unique_function &operator=(const unique_function &other) = delete;
// Move construct / assign from the same type.
unique_function(unique_function &&other)
: _impl(std::move(other._impl)) {}
unique_function &operator=(unique_function &&other) {
_impl = std::move(other._impl);
return *this;
}
template <typename Callable, typename = std::enable_if_t<std::is_convertible_v<
decltype(std::declval<Callable>()(std::declval<Args>()...)), Return>>>
unique_function(Callable &&other)
: unique_function(std::forward<Callable>(other), std::is_copy_constructible<std::decay_t<Callable>>{}) {}
template <typename Callable, typename = std::enable_if_t<std::is_convertible_v<
decltype(std::declval<Callable>()(std::declval<Args>()...)), Return>>>
unique_function &operator=(Callable &&other) {
using Decayed = std::decay_t<Callable>;
if constexpr (std::is_copy_constructible_v<Decayed>) {
_impl = std::forward<Callable>(other);
} else if constexpr (std::is_move_constructible_v<Decayed>) {
_impl = details::moveable_callable_wrap<Decayed>(std::forward<Callable>(other));
} else {
static_assert(false_t(other), "Should be moveable.");
}
return *this;
}
void swap(unique_function &other) {
_impl.swap(other._impl);
}
template <typename... OtherArgs> Return operator()(OtherArgs &&... args) {
return _impl(std::forward<OtherArgs>(args)...);
}
explicit operator bool() const {
return _impl.operator bool();
}
friend inline bool operator==(const unique_function &value, std::nullptr_t) noexcept {
return value._impl == nullptr;
}
friend inline bool operator==(std::nullptr_t, const unique_function &value) noexcept {
return value._impl == nullptr;
}
friend inline bool operator!=(const unique_function &value, std::nullptr_t) noexcept {
return value._impl != nullptr;
}
friend inline bool operator!=(std::nullptr_t, const unique_function &value) noexcept {
return value._impl != nullptr;
}
private:
template <typename Callable>
unique_function(Callable &&other, std::true_type)
: _impl(std::forward<Callable>(other)) {}
template <typename Callable>
unique_function(Callable &&other, std::false_type)
: _impl(details::moveable_callable_wrap<std::decay_t<Callable>>(std::forward<Callable>(other))) {}
std::function<Return(Args...)> _impl;
};
} // namespace base
#ifdef UniqueFunctionUnexpected
#undef UniqueFunctionUnexpected
#undef Unexpected
#endif // UniqueFunctionUnexpectedb

View File

@ -920,7 +920,9 @@ template <typename R> class RPCDoneHandlerImplementationNo : public RPCDoneHandl
public:
using RPCDoneHandlerImplementation<R()>::Parent::Parent;
void operator()(mtpRequestId requestId, const mtpPrime *from, const mtpPrime *end) override {
return this->_handler ? this->_handler() : void(0);
if (this->_handler) {
this->_handler();
}
}
};
@ -929,41 +931,81 @@ class RPCDoneHandlerImplementationNoReq : public RPCDoneHandlerImplementation<R(
public:
using RPCDoneHandlerImplementation<R(mtpRequestId)>::Parent::Parent;
void operator()(mtpRequestId requestId, const mtpPrime *from, const mtpPrime *end) override {
return this->_handler ? this->_handler(requestId) : void(0);
if (this->_handler) {
this->_handler(requestId);
}
}
};
template <typename R>
inline RPCDoneHandlerPtr rpcDone_lambda_wrap_helper(base::lambda_once<R(const mtpPrime *, const mtpPrime *)> lambda) {
return RPCDoneHandlerPtr(new RPCDoneHandlerImplementationBare<R>(std::move(lambda)));
}
template <typename Lambda>
constexpr bool rpcDone_canCallBare_v = std::is_invocable_v<Lambda, const mtpPrime *, const mtpPrime *>;
template <typename R>
inline RPCDoneHandlerPtr
rpcDone_lambda_wrap_helper(base::lambda_once<R(const mtpPrime *, const mtpPrime *, mtpRequestId)> lambda) {
return RPCDoneHandlerPtr(new RPCDoneHandlerImplementationBareReq<R>(std::move(lambda)));
}
template <typename Lambda>
constexpr bool rpcDone_canCallBareReq_v = std::is_invocable_v<Lambda, const mtpPrime *, const mtpPrime *, mtpRequestId>;
template <typename R, typename T>
inline RPCDoneHandlerPtr rpcDone_lambda_wrap_helper(base::lambda_once<R(const T &)> lambda) {
return RPCDoneHandlerPtr(new RPCDoneHandlerImplementationPlain<R, T>(std::move(lambda)));
}
template <typename Lambda> constexpr bool rpcDone_canCallNo_v = std::is_invocable_v<Lambda>;
template <typename R, typename T>
inline RPCDoneHandlerPtr rpcDone_lambda_wrap_helper(base::lambda_once<R(const T &, mtpRequestId)> lambda) {
return RPCDoneHandlerPtr(new RPCDoneHandlerImplementationReq<R, T>(std::move(lambda)));
}
template <typename Lambda> constexpr bool rpcDone_canCallNoReq_v = std::is_invocable_v<Lambda, mtpRequestId>;
template <typename R> inline RPCDoneHandlerPtr rpcDone_lambda_wrap_helper(base::lambda_once<R()> lambda) {
return RPCDoneHandlerPtr(new RPCDoneHandlerImplementationNo<R>(std::move(lambda)));
}
template <typename Function> struct rpcDone_canCallPlain : std::false_type {};
template <typename R> inline RPCDoneHandlerPtr rpcDone_lambda_wrap_helper(base::lambda_once<R(mtpRequestId)> lambda) {
return RPCDoneHandlerPtr(new RPCDoneHandlerImplementationNoReq<R>(std::move(lambda)));
}
template <typename Lambda, typename Return, typename T>
struct rpcDone_canCallPlain<Return (Lambda::*)(const T &)> : std::true_type {
using Arg = T;
};
template <typename Lambda> RPCDoneHandlerPtr rpcDone(Lambda lambda) {
return rpcDone_lambda_wrap_helper(base::lambda_type<Lambda>(std::move(lambda)));
template <typename Lambda, typename Return, typename T>
struct rpcDone_canCallPlain<Return (Lambda::*)(const T &) const> : rpcDone_canCallPlain<Return (Lambda::*)(const T &)> {
};
template <typename Function> constexpr bool rpcDone_canCallPlain_v = rpcDone_canCallPlain<Function>::value;
template <typename Function> struct rpcDone_canCallReq : std::false_type {};
template <typename Lambda, typename Return, typename T>
struct rpcDone_canCallReq<Return (Lambda::*)(const T &, mtpRequestId)> : std::true_type {
using Arg = T;
};
template <typename Lambda, typename Return, typename T>
struct rpcDone_canCallReq<Return (Lambda::*)(const T &, mtpRequestId) const>
: rpcDone_canCallReq<Return (Lambda::*)(const T &, mtpRequestId)> {};
template <typename Function> constexpr bool rpcDone_canCallReq_v = rpcDone_canCallReq<Function>::value;
template <typename Function> struct rpcDone_returnType;
template <typename Lambda, typename Return, typename... Args> struct rpcDone_returnType<Return (Lambda::*)(Args...)> {
using type = Return;
};
template <typename Lambda, typename Return, typename... Args>
struct rpcDone_returnType<Return (Lambda::*)(Args...) const> {
using type = Return;
};
template <typename Function> using rpcDone_returnType_t = typename rpcDone_returnType<Function>::type;
template <typename Lambda, typename Function = base::lambda_call_type_t<Lambda>>
RPCDoneHandlerPtr rpcDone(Lambda lambda) {
using R = rpcDone_returnType_t<Function>;
if constexpr (rpcDone_canCallBare_v<Lambda>) {
return RPCDoneHandlerPtr(new RPCDoneHandlerImplementationBare<R>(std::move(lambda)));
} else if constexpr (rpcDone_canCallBareReq_v<Lambda>) {
return RPCDoneHandlerPtr(new RPCDoneHandlerImplementationBareReq<R>(std::move(lambda)));
} else if constexpr (rpcDone_canCallNo_v<Lambda>) {
return RPCDoneHandlerPtr(new RPCDoneHandlerImplementationNo<R>(std::move(lambda)));
} else if constexpr (rpcDone_canCallNoReq_v<Lambda>) {
return RPCDoneHandlerPtr(new RPCDoneHandlerImplementationNoReq<R>(std::move(lambda)));
} else if constexpr (rpcDone_canCallPlain_v<Function>) {
using T = typename rpcDone_canCallPlain<Function>::Arg;
return RPCDoneHandlerPtr(new RPCDoneHandlerImplementationPlain<R, T>(std::move(lambda)));
} else if constexpr (rpcDone_canCallReq_v<Function>) {
using T = typename rpcDone_canCallReq<Function>::Arg;
return RPCDoneHandlerPtr(new RPCDoneHandlerImplementationReq<R, T>(std::move(lambda)));
} else {
static_assert(std::is_same<decltype(lambda), bool>::value, "Unknown method.");
}
}
template <typename FunctionType>
@ -1002,22 +1044,26 @@ public:
}
};
inline RPCFailHandlerPtr rpcFail_lambda_wrap_helper(base::lambda_once<bool(const RPCError &)> lambda) {
return RPCFailHandlerPtr(new RPCFailHandlerImplementationPlain(std::move(lambda)));
}
template <typename Lambda> constexpr bool rpcFail_canCallNo_v = std::is_invocable_v<Lambda>;
inline RPCFailHandlerPtr rpcFail_lambda_wrap_helper(base::lambda_once<bool(const RPCError &, mtpRequestId)> lambda) {
return RPCFailHandlerPtr(new RPCFailHandlerImplementationReq(std::move(lambda)));
}
template <typename Lambda> constexpr bool rpcFail_canCallNoReq_v = std::is_invocable_v<Lambda, mtpRequestId>;
inline RPCFailHandlerPtr rpcFail_lambda_wrap_helper(base::lambda_once<bool()> lambda) {
return RPCFailHandlerPtr(new RPCFailHandlerImplementationNo(std::move(lambda)));
}
template <typename Lambda> constexpr bool rpcFail_canCallPlain_v = std::is_invocable_v<Lambda, const RPCError &>;
inline RPCFailHandlerPtr rpcFail_lambda_wrap_helper(base::lambda_once<bool(mtpRequestId)> lambda) {
return RPCFailHandlerPtr(new RPCFailHandlerImplementationNoReq(std::move(lambda)));
}
template <typename Lambda>
constexpr bool rpcFail_canCallReq_v = std::is_invocable_v<Lambda, const RPCError &, mtpRequestId>;
template <typename Lambda> RPCFailHandlerPtr rpcFail(Lambda lambda) {
return rpcFail_lambda_wrap_helper(base::lambda_type<Lambda>(std::move(lambda)));
template <typename Lambda, typename Function = base::lambda_call_type_t<Lambda>>
RPCFailHandlerPtr rpcFail(Lambda lambda) {
if constexpr (rpcFail_canCallNo_v<Lambda>) {
return RPCFailHandlerPtr(new RPCFailHandlerImplementationNo(std::move(lambda)));
} else if constexpr (rpcFail_canCallNoReq_v<Lambda>) {
return RPCFailHandlerPtr(new RPCFailHandlerImplementationNoReq(std::move(lambda)));
} else if constexpr (rpcFail_canCallPlain_v<Lambda>) {
return RPCFailHandlerPtr(new RPCFailHandlerImplementationPlain(std::move(lambda)));
} else if constexpr (rpcFail_canCallReq_v<Lambda>) {
return RPCFailHandlerPtr(new RPCFailHandlerImplementationReq(std::move(lambda)));
} else {
static_assert(std::is_same<decltype(lambda), bool>::value, "Unknown method.");
}
}