git subrepo clone https://github.com/Microsoft/GSL.git Telegram/ThirdParty/GSL

subrepo:
  subdir:   "Telegram/ThirdParty/GSL"
  merged:   "1c95f943"
upstream:
  origin:   "https://github.com/Microsoft/GSL.git"
  branch:   "master"
  commit:   "1c95f943"
git-subrepo:
  version:  "0.3.1"
  origin:   "???"
  commit:   "???"
This commit is contained in:
Berkus Decker 2017-11-22 03:54:35 +02:00 committed by Berkus Decker
parent e95133d56b
commit b999b8331f
36 changed files with 11416 additions and 4 deletions

3
.gitmodules vendored
View File

@ -1,6 +1,3 @@
[submodule "Telegram/ThirdParty/GSL"]
path = Telegram/ThirdParty/GSL
url = https://github.com/Microsoft/GSL.git
[submodule "Telegram/ThirdParty/Catch"]
path = Telegram/ThirdParty/Catch
url = https://github.com/philsquared/Catch

@ -1 +0,0 @@
Subproject commit c5851a8161938798c5594a66420cb814fea92711

21
Telegram/ThirdParty/GSL/.clang-format vendored Normal file
View File

@ -0,0 +1,21 @@
ColumnLimit: 100
UseTab: Never
IndentWidth: 4
AccessModifierOffset: -4
NamespaceIndentation: Inner
BreakBeforeBraces: Allman
AlwaysBreakTemplateDeclarations: true
BreakConstructorInitializersBeforeComma: true
ConstructorInitializerAllOnOneLineOrOnePerLine: true
AllowShortBlocksOnASingleLine: true
AllowShortFunctionsOnASingleLine: All
AllowShortIfStatementsOnASingleLine: true
AllowShortLoopsOnASingleLine: true
PointerAlignment: Left
AlignConsecutiveAssignments: false
AlignTrailingComments: true
SpaceAfterCStyleCast: true

16
Telegram/ThirdParty/GSL/.gitignore vendored Normal file
View File

@ -0,0 +1,16 @@
CMakeFiles
build
tests/CMakeFiles
tests/Debug
*.opensdf
*.sdf
tests/*tests.dir
*.vcxproj
*.vcxproj.filters
*.sln
*.tlog
Testing/Temporary/*.*
CMakeCache.txt
*.suo
.vs/
.vscode/

11
Telegram/ThirdParty/GSL/.gitrepo vendored Normal file
View File

@ -0,0 +1,11 @@
; DO NOT EDIT (unless you know what you are doing)
;
; This subdirectory is a git "subrepo", and this file is maintained by the
; git-subrepo command. See https://github.com/git-commands/git-subrepo#readme
;
[subrepo]
remote = https://github.com/Microsoft/GSL.git
branch = master
commit = 1c95f9436eae69c9b9315911ef6aa210df7d1e31
parent = 0dde6bbc3b558644359e5ee49725e508babcea8b
cmdver = 0.3.1

239
Telegram/ThirdParty/GSL/.travis.yml vendored Normal file
View File

@ -0,0 +1,239 @@
# Based on https://github.com/ldionne/hana/blob/master/.travis.yml
language: cpp
sudo: false
notifications:
email: false
# Use Linux unless specified otherwise
os: linux
dist: trusty
cache:
directories:
- ${TRAVIS_BUILD_DIR}/deps
matrix:
include:
##########################################################################
# Clang on OSX
# Travis seems to take longer to start OSX instances,
# so leave this first for the overall build to be faster
##########################################################################
# XCode 8.3
- env: COMPILER=clang++ BUILD_TYPE=Debug
os: osx
osx_image: xcode8.3
compiler: clang
- env: COMPILER=clang++ BUILD_TYPE=Release
os: osx
osx_image: xcode8.3
compiler: clang
# XCode 9.1
- env: COMPILER=clang++ BUILD_TYPE=Debug
os: osx
osx_image: xcode9.1
compiler: clang
- env: COMPILER=clang++ BUILD_TYPE=Release
os: osx
osx_image: xcode9.1
compiler: clang
##########################################################################
# Clang on Linux
##########################################################################
# Clang 3.6
- env: COMPILER=clang++-3.6 BUILD_TYPE=Debug
addons: &clang36
apt:
packages:
- clang-3.6
- g++-5
sources:
- ubuntu-toolchain-r-test
- llvm-toolchain-precise-3.6
- env: COMPILER=clang++-3.6 BUILD_TYPE=Release
addons: *clang36
# Clang 3.7
- env: COMPILER=clang++-3.7 BUILD_TYPE=Debug
addons: &clang37
apt:
packages:
- clang-3.7
- g++-5
sources:
- ubuntu-toolchain-r-test
- llvm-toolchain-precise-3.7
- env: COMPILER=clang++-3.7 BUILD_TYPE=Release
addons: *clang37
# Clang 3.8
- env: COMPILER=clang++-3.8 BUILD_TYPE=Debug
addons: &clang38
apt:
packages:
- clang-3.8
- g++-5
sources:
- ubuntu-toolchain-r-test
- llvm-toolchain-precise-3.8
- env: COMPILER=clang++-3.8 BUILD_TYPE=Release
addons: *clang38
# Clang 3.9
- env: COMPILER=clang++-3.9 BUILD_TYPE=Debug
addons: &clang39
apt:
packages:
- clang-3.9
- g++-5
sources:
- ubuntu-toolchain-r-test
- llvm-toolchain-precise-3.9
- env: COMPILER=clang++-3.9 BUILD_TYPE=Release
addons: *clang39
# Clang 4.0
- env: COMPILER=clang++-4.0 BUILD_TYPE=Debug
addons: &clang40
apt:
packages:
- clang-4.0
- g++-5
sources:
- ubuntu-toolchain-r-test
- llvm-toolchain-trusty-4.0
- env: COMPILER=clang++-4.0 BUILD_TYPE=Release
addons: *clang40
# Clang 5.0
- env: COMPILER=clang++-5.0 BUILD_TYPE=Debug
addons: &clang40
apt:
packages:
- clang-5.0
- g++-5
sources:
- ubuntu-toolchain-r-test
- llvm-toolchain-trusty-5.0
- sourceline: 'deb http://apt.llvm.org/trusty/ llvm-toolchain-trusty-4.0 main'
key_url: 'https://apt.llvm.org/llvm-snapshot.gpg.key'
- env: COMPILER=clang++-5.0 BUILD_TYPE=Release
addons: *clang40
##########################################################################
# GCC on Linux
##########################################################################
# GCC 5
- env: COMPILER=g++-5 BUILD_TYPE=Debug
addons: &gcc5
apt:
packages: g++-5
sources:
- ubuntu-toolchain-r-test
- env: COMPILER=g++-5 BUILD_TYPE=Release
addons: *gcc5
# GCC 6
- env: COMPILER=g++-6 BUILD_TYPE=Debug
addons: &gcc6
apt:
packages: g++-6
sources:
- ubuntu-toolchain-r-test
- env: COMPILER=g++-6 BUILD_TYPE=Release
addons: *gcc6
# Currently fails due to #525
## GCC 7
#- env: COMPILER=g++-7 BUILD_TYPE=Debug
# addons: &gcc7
# apt:
# packages: g++-7
# sources:
# - ubuntu-toolchain-r-test
#- env: COMPILER=g++-7 BUILD_TYPE=Release
# addons: *gcc7
install:
# Set the ${CXX} variable properly
- export CXX=${COMPILER}
- ${CXX} --version
# Dependencies required by the CI are installed in ${TRAVIS_BUILD_DIR}/deps/
- DEPS_DIR="${TRAVIS_BUILD_DIR}/deps"
- mkdir -p "${DEPS_DIR}"
- cd "${DEPS_DIR}"
# Travis machines have 2 cores
- JOBS=2
############################################################################
# Install a recent CMake (unless already installed on OS X)
############################################################################
- CMAKE_VERSION=3.7.2
- |
if [[ "${TRAVIS_OS_NAME}" == "linux" ]]; then
CMAKE_URL="https://cmake.org/files/v${CMAKE_VERSION%.[0-9]}/cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz"
mkdir cmake && travis_retry wget --no-check-certificate -O - ${CMAKE_URL} | tar --strip-components=1 -xz -C cmake
export PATH=${DEPS_DIR}/cmake/bin:${PATH}
else
brew install cmake || brew upgrade cmake
fi
- cmake --version
############################################################################
# [linux]: Install the right version of libc++
############################################################################
- |
LLVM_INSTALL=${DEPS_DIR}/llvm/install
# if in linux and compiler clang and llvm not installed
if [[ "${TRAVIS_OS_NAME}" == "linux" && "${CXX%%+*}" == "clang" && -n "$(ls -A ${LLVM_INSTALL})" ]]; then
if [[ "${CXX}" == "clang++-3.6" ]]; then LLVM_VERSION="3.6.2";
elif [[ "${CXX}" == "clang++-3.7" ]]; then LLVM_VERSION="3.7.1";
elif [[ "${CXX}" == "clang++-3.8" ]]; then LLVM_VERSION="3.8.1";
elif [[ "${CXX}" == "clang++-3.9" ]]; then LLVM_VERSION="3.9.1";
fi
LLVM_URL="http://llvm.org/releases/${LLVM_VERSION}/llvm-${LLVM_VERSION}.src.tar.xz"
LIBCXX_URL="http://llvm.org/releases/${LLVM_VERSION}/libcxx-${LLVM_VERSION}.src.tar.xz"
LIBCXXABI_URL="http://llvm.org/releases/${LLVM_VERSION}/libcxxabi-${LLVM_VERSION}.src.tar.xz"
mkdir -p llvm llvm/build llvm/projects/libcxx llvm/projects/libcxxabi
travis_retry wget -O - ${LLVM_URL} | tar --strip-components=1 -xJ -C llvm
travis_retry wget -O - ${LIBCXX_URL} | tar --strip-components=1 -xJ -C llvm/projects/libcxx
travis_retry wget -O - ${LIBCXXABI_URL} | tar --strip-components=1 -xJ -C llvm/projects/libcxxabi
(cd llvm/build && cmake .. -DCMAKE_INSTALL_PREFIX=${LLVM_INSTALL})
(cd llvm/build/projects/libcxx && make install -j2)
(cd llvm/build/projects/libcxxabi && make install -j2)
export CXXFLAGS="-isystem ${LLVM_INSTALL}/include/c++/v1"
export LDFLAGS="-L ${LLVM_INSTALL}/lib -l c++ -l c++abi"
export LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:${LLVM_INSTALL}/lib"
fi
before_script:
# have CMake to generate build files
- cd "${TRAVIS_BUILD_DIR}"
- mkdir build && cd build
- cmake .. -DCMAKE_BUILD_TYPE=$BUILD_TYPE
script:
# build and run tests
- cmake --build . -- -j${JOBS}
- ctest --output-on-failure -j${JOBS}

66
Telegram/ThirdParty/GSL/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,66 @@
cmake_minimum_required(VERSION 3.1.3)
project(GSL CXX)
include(ExternalProject)
find_package(Git)
# creates a library GSL which is an interface (header files only)
add_library(GSL INTERFACE)
# determine whether this is a standalone project or included by other projects
set(GSL_STANDALONE_PROJECT OFF)
if (CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_SOURCE_DIR)
set(GSL_STANDALONE_PROJECT ON)
endif ()
# when minimum version required is 3.8.0 remove if below
# both branches do exactly the same thing
if (CMAKE_MAJOR_VERSION VERSION_LESS 3.7.9)
if (NOT MSVC)
include(CheckCXXCompilerFlag)
CHECK_CXX_COMPILER_FLAG("-std=c++14" COMPILER_SUPPORTS_CXX14)
if(COMPILER_SUPPORTS_CXX14)
target_compile_options(GSL INTERFACE "-std=c++14")
else()
message(FATAL_ERROR "The compiler ${CMAKE_CXX_COMPILER} has no C++14 support. Please use a different C++ compiler.")
endif()
endif()
else ()
# set the GSL library to be compiled only with c++14
target_compile_features(GSL INTERFACE cxx_std_14)
# on *nix systems force the use of -std=c++XX instead of -std=gnu++XX (default)
set(CMAKE_CXX_EXTENSIONS OFF)
endif()
# add definitions to the library and targets that consume it
target_compile_definitions(GSL INTERFACE
$<$<CXX_COMPILER_ID:MSVC>:
# remove unnecessary warnings about unchecked iterators
_SCL_SECURE_NO_WARNINGS
>
)
# add include folders to the library and targets that consume it
target_include_directories(GSL INTERFACE
$<BUILD_INTERFACE:
${CMAKE_CURRENT_SOURCE_DIR}/include
>
)
# add natvis file to the library so it will automatically be loaded into Visual Studio
target_sources(GSL INTERFACE
${CMAKE_CURRENT_SOURCE_DIR}/GSL.natvis
)
install(
DIRECTORY include/gsl
DESTINATION include
)
option(GSL_TEST "Generate tests." ${GSL_STANDALONE_PROJECT})
if (GSL_TEST)
enable_testing()
add_subdirectory(tests)
endif ()

29
Telegram/ThirdParty/GSL/CONTRIBUTING.md vendored Normal file
View File

@ -0,0 +1,29 @@
## Contributing to the Guideline Support Library
The Guideline Support Library (GSL) contains functions and types that are suggested for use by the
[C++ Core Guidelines](https://github.com/isocpp/CppCoreGuidelines). GSL design changes are made only as a result of modifications to the Guidelines.
GSL is accepting contributions that improve or refine any of the types in this library as well as ports to other platforms. Changes should have an issue
tracking the suggestion that has been approved by the maintainers. Your pull request should include a link to the bug that you are fixing. If you've submitted
a PR, please post a comment in the associated issue to avoid duplication of effort.
## Legal
You will need to complete a Contributor License Agreement (CLA). Briefly, this agreement testifies that you are granting us and the community permission to
use the submitted change according to the terms of the project's license, and that the work being submitted is under appropriate copyright.
Please submit a Contributor License Agreement (CLA) before submitting a pull request. You may visit https://cla.microsoft.com to sign digitally.
## Housekeeping
Your pull request should:
* Include a description of what your change intends to do
* Be a child commit of a reasonably recent commit in the **master** branch
* Requests need not be a single commit, but should be a linear sequence of commits (i.e. no merge commits in your PR)
* It is desirable, but not necessary, for the tests to pass at each commit. Please see [README.md](./README.md) for instructions to build the test suite.
* Have clear commit messages
* e.g. "Fix issue", "Add tests for type", etc.
* Include appropriate tests
* Tests should include reasonable permutations of the target fix/change
* Include baseline changes with your change
* All changed code must have 100% code coverage
* To avoid line ending issues, set `autocrlf = input` and `whitespace = cr-at-eol` in your git configuration

98
Telegram/ThirdParty/GSL/GSL.natvis vendored Normal file
View File

@ -0,0 +1,98 @@
<?xml version="1.0" encoding="utf-8"?>
<!--
This will make GitHub and some editors recognize this code as XML:
vim: syntax=xml
-->
<AutoVisualizer xmlns="http://schemas.microsoft.com/vstudio/debugger/natvis/2010">
<!-- These types are from the gsl_assert header. -->
<Type Name="gsl::fail_fast">
<!-- na hides the address, otherwise it would appear as 0x.... "Message" -->
<DisplayString>{_Data._What,nasb}</DisplayString>
</Type>
<!-- These types are from the gsl_util header. -->
<Type Name="gsl::final_act&lt;*&gt;">
<DisplayString>{{ invoke = {invoke_}, action = {f_} }}</DisplayString>
<Expand>
<Item Name="[invoke]">invoke_</Item>
<Item Name="[callback]">f_</Item>
</Expand>
</Type>
<!-- These types are from the span header. -->
<!-- This is for dynamic_extent spans. -->
<Type Name="gsl::span&lt;*, -1&gt;">
<DisplayString>{{ extent = {storage_.size_} }}</DisplayString>
<Expand>
<ArrayItems>
<Size>storage_.size_</Size>
<ValuePointer>storage_.data_</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<!-- This works for constexpr size spans. -->
<Type Name="gsl::span&lt;*, *&gt;">
<DisplayString>{{ extent = {extent} }}</DisplayString>
<Expand>
<ArrayItems>
<Size>extent</Size>
<ValuePointer>storage_.data_</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<!-- This is for dynamic_extent string_spans. -->
<Type Name="gsl::basic_string_span&lt;*, -1&gt;">
<DisplayString>{span_.storage_.data_,[span_.storage_.size_]na}</DisplayString>
<Expand>
<Item Name="[size]">span_.storage_.size_</Item>
<ArrayItems>
<Size>span_.storage_.size_</Size>
<ValuePointer>span_.storage_.data_</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<!-- This works for constexpr size string_spans. -->
<Type Name="gsl::basic_string_span&lt;*, *&gt;">
<DisplayString>{span_.storage_.data_,[span_.extent]na}</DisplayString>
<Expand>
<Item Name="[size]">span_.extent</Item>
<ArrayItems>
<Size>span_.extent</Size>
<ValuePointer>span_.storage_.data_</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<!-- This is for dynamic_extent zstring_spans. -->
<Type Name="gsl::basic_zstring_span&lt;*, -1&gt;">
<DisplayString>{span_.storage_.data_,[span_.storage_.size_]na}</DisplayString>
<Expand>
<Item Name="[size]">span_.storage_.size_</Item>
<ArrayItems>
<Size>span_.storage_.size_</Size>
<ValuePointer>span_.storage_.data_</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<!-- This works for constexpr size string_spans. -->
<Type Name="gsl::basic_zstring_span&lt;*, *&gt;">
<DisplayString>{span_.storage_.data_,[span_.extent]na}</DisplayString>
<Expand>
<Item Name="[size]">span_.extent</Item>
<ArrayItems>
<Size>span_.extent</Size>
<ValuePointer>span_.storage_.data_</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<!-- These types are from the gsl header. -->
<Type Name="gsl::not_null&lt;*&gt;">
<!-- We can always dereference this since it's an invariant. -->
<DisplayString>value = {*ptr_}</DisplayString>
</Type>
</AutoVisualizer>

21
Telegram/ThirdParty/GSL/LICENSE vendored Normal file
View File

@ -0,0 +1,21 @@
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
This code is licensed under the MIT License (MIT).
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

92
Telegram/ThirdParty/GSL/README.md vendored Normal file
View File

@ -0,0 +1,92 @@
# GSL: Guideline Support Library [![Build Status](https://travis-ci.org/Microsoft/GSL.svg?branch=master)](https://travis-ci.org/Microsoft/GSL) [![Build status](https://ci.appveyor.com/api/projects/status/github/Microsoft/GSL?svg=true)](https://ci.appveyor.com/project/neilmacintosh/GSL)
The Guideline Support Library (GSL) contains functions and types that are suggested for use by the
[C++ Core Guidelines](https://github.com/isocpp/CppCoreGuidelines) maintained by the [Standard C++ Foundation](https://isocpp.org).
This repo contains Microsoft's implementation of GSL.
The library includes types like `span<T>`, `string_span`, `owner<>` and others.
The entire implementation is provided inline in the headers under the [gsl](./include/gsl) directory. The implementation generally assumes a platform that implements C++14 support. There are specific workarounds to support MSVC 2015.
While some types have been broken out into their own headers (e.g. [gsl/span](./include/gsl/span)),
it is simplest to just include [gsl/gsl](./include/gsl/gsl) and gain access to the entire library.
> NOTE: We encourage contributions that improve or refine any of the types in this library as well as ports to
other platforms. Please see [CONTRIBUTING.md](./CONTRIBUTING.md) for more information about contributing.
# Project Code of Conduct
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
# Usage of Third Party Libraries
This project makes use of the [Catch](https://github.com/philsquared/catch) testing library. Please see the [ThirdPartyNotices.txt](./ThirdPartyNotices.txt) file for details regarding the licensing of Catch.
# Quick Start
## Supported Platforms
The test suite that exercises GSL has been built and passes successfully on the following platforms:<sup>1)</sup>
* Windows using Visual Studio 2015
* Windows using Visual Studio 2017
* Windows using Clang/LLVM 3.6
* Windows using GCC 5.1
* GNU/Linux using Clang/LLVM 3.6
* GNU/Linux using GCC 5.1
* OS X Yosemite using Xcode with Apple Clang 7.0.0.7000072
* OS X Yosemite using GCC-5.2.0
* OS X Sierra 10.12.4 using Apple LLVM version 8.1.0 (Clang-802.0.42)
* OS X El Capitan (10.11) using Xcode with AppleClang 8.0.0.8000042
* FreeBSD 10.x with Clang/LLVM 3.6
> If you successfully port GSL to another platform, we would love to hear from you. Please submit an issue to let us know. Also please consider
contributing any changes that were necessary back to this project to benefit the wider community.
<sup>1)</sup> For `gsl::byte` to work correctly with Clang and GCC you might have to use the ` -fno-strict-aliasing` compiler option.
## Building the tests
To build the tests, you will require the following:
* [CMake](http://cmake.org), version 3.1.3 or later to be installed and in your PATH.
These steps assume the source code of this repository has been cloned into a directory named `c:\GSL`.
1. Create a directory to contain the build outputs for a particular architecture (we name it c:\GSL\build-x86 in this example).
cd GSL
md build-x86
cd build-x86
2. Configure CMake to use the compiler of your choice (you can see a list by running `cmake --help`).
cmake -G "Visual Studio 14 2015" c:\GSL
3. Build the test suite (in this case, in the Debug configuration, Release is another good choice).
cmake --build . --config Debug
4. Run the test suite.
ctest -C Debug
All tests should pass - indicating your platform is fully supported and you are ready to use the GSL types!
## Using the libraries
As the types are entirely implemented inline in headers, there are no linking requirements.
You can copy the [gsl](./include/gsl) directory into your source tree so it is available
to your compiler, then include the appropriate headers in your program.
Alternatively set your compiler's *include path* flag to point to the GSL development folder (`c:\GSL\include` in the example above) or installation folder (after running the install). Eg.
MSVC++
/I c:\GSL\include
GCC/clang
-I$HOME/dev/GSL/include
Include the library using:
#include <gsl/gsl>
## Debugging visualization support
For Visual Studio users, the file [GSL.natvis](./GSL.natvis) in the root directory of the repository can be added to your project if you would like more helpful visualization of GSL types in the Visual Studio debugger than would be offered by default.

View File

@ -0,0 +1,39 @@
THIRD-PARTY SOFTWARE NOTICES AND INFORMATION
Do Not Translate or Localize
GSL: Guideline Support Library incorporates third party material from the projects listed below. The original copyright notice and the license under which Microsoft received such third party material are set forth below. Microsoft reserves all other rights not expressly granted, whether by implication, estoppel or otherwise.
1. Catch (https://github.com/philsquared/Catch)
%% Catch NOTICES, INFORMATION, AND LICENSE BEGIN HERE
=========================================
Boost Software License - Version 1.0 - August 17th, 2003
Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:
The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
=========================================
END OF Catch NOTICES, INFORMATION, AND LICENSE

47
Telegram/ThirdParty/GSL/appveyor.yml vendored Normal file
View File

@ -0,0 +1,47 @@
shallow_clone: true
platform:
- x86
- x64
configuration:
- Debug
- Release
image:
- Visual Studio 2015
- Visual Studio 2017
cache:
- C:\cmake-3.8.0-win32-x86
install:
- ps: |
if (![IO.File]::Exists("C:\cmake-3.8.0-win32-x86\bin\cmake.exe")) {
Start-FileDownload 'https://cmake.org/files/v3.8/cmake-3.8.0-win32-x86.zip'
7z x -y cmake-3.8.0-win32-x86.zip -oC:\
}
$env:PATH="C:\cmake-3.8.0-win32-x86\bin;$env:PATH"
before_build:
- ps: |
mkdir build
cd build
if ("$env:APPVEYOR_JOB_NAME" -match "Image: Visual Studio 2015") {
$env:generator="Visual Studio 14 2015"
} else {
$env:generator="Visual Studio 15 2017"
}
if ($env:PLATFORM -eq "x64") {
$env:generator="$env:generator Win64"
}
echo generator="$env:generator"
cmake .. -G "$env:generator"
build_script:
- cmake --build . --config %CONFIGURATION% -- /m /v:minimal
test_script:
- ctest -j2
deploy: off

27
Telegram/ThirdParty/GSL/include/gsl/gsl vendored Normal file
View File

@ -0,0 +1,27 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_GSL_H
#define GSL_GSL_H
#include <gsl/gsl_assert> // Ensures/Expects
#include <gsl/gsl_util> // finally()/narrow()/narrow_cast()...
#include <gsl/multi_span> // multi_span, strided_span...
#include <gsl/span> // span
#include <gsl/string_span> // zstring, string_span, zstring_builder...
#include <gsl/pointers> // owner, not_null
#endif // GSL_GSL_H

View File

@ -0,0 +1,60 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_ALGORITHM_H
#define GSL_ALGORITHM_H
#include <gsl/span>
#include <algorithm>
#ifdef _MSC_VER
#pragma warning(push)
// turn off some warnings that are noisy about our Expects statements
#pragma warning(disable : 4127) // conditional expression is constant
#pragma warning(disable : 4996) // unsafe use of std::copy_n
// blanket turn off warnings from CppCoreCheck for now
// so people aren't annoyed by them when running the tool.
// more targeted suppressions will be added in a future update to the GSL
#pragma warning(disable : 26481 26482 26483 26485 26490 26491 26492 26493 26495)
#endif // _MSC_VER
namespace gsl
{
template <class SrcElementType, std::ptrdiff_t SrcExtent, class DestElementType,
std::ptrdiff_t DestExtent>
void copy(span<SrcElementType, SrcExtent> src, span<DestElementType, DestExtent> dest)
{
static_assert(std::is_assignable<decltype(*dest.data()), decltype(*src.data())>::value,
"Elements of source span can not be assigned to elements of destination span");
static_assert(SrcExtent == dynamic_extent || DestExtent == dynamic_extent ||
(SrcExtent <= DestExtent),
"Source range is longer than target range");
Expects(dest.size() >= src.size());
std::copy_n(src.data(), src.size(), dest.data());
}
} // namespace gsl
#ifdef _MSC_VER
#pragma warning(pop)
#endif // _MSC_VER
#endif // GSL_ALGORITHM_H

View File

@ -0,0 +1,95 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_CONTRACTS_H
#define GSL_CONTRACTS_H
#include <exception>
#include <stdexcept>
//
// There are three configuration options for this GSL implementation's behavior
// when pre/post conditions on the GSL types are violated:
//
// 1. GSL_TERMINATE_ON_CONTRACT_VIOLATION: std::terminate will be called (default)
// 2. GSL_THROW_ON_CONTRACT_VIOLATION: a gsl::fail_fast exception will be thrown
// 3. GSL_UNENFORCED_ON_CONTRACT_VIOLATION: nothing happens
//
#if !(defined(GSL_THROW_ON_CONTRACT_VIOLATION) || defined(GSL_TERMINATE_ON_CONTRACT_VIOLATION) || \
defined(GSL_UNENFORCED_ON_CONTRACT_VIOLATION))
#define GSL_TERMINATE_ON_CONTRACT_VIOLATION
#endif
#define GSL_STRINGIFY_DETAIL(x) #x
#define GSL_STRINGIFY(x) GSL_STRINGIFY_DETAIL(x)
#if defined(__clang__) || defined(__GNUC__)
#define GSL_LIKELY(x) __builtin_expect(!!(x), 1)
#define GSL_UNLIKELY(x) __builtin_expect(!!(x), 0)
#else
#define GSL_LIKELY(x) (!!(x))
#define GSL_UNLIKELY(x) (!!(x))
#endif
//
// GSL_ASSUME(cond)
//
// Tell the optimizer that the predicate cond must hold. It is unspecified
// whether or not cond is actually evaluated.
//
#ifdef _MSC_VER
#define GSL_ASSUME(cond) __assume(cond)
#elif defined(__clang__)
#define GSL_ASSUME(cond) __builtin_assume(cond)
#elif defined(__GNUC__)
#define GSL_ASSUME(cond) ((cond) ? static_cast<void>(0) : __builtin_unreachable())
#else
#define GSL_ASSUME(cond) static_cast<void>(!!(cond))
#endif
//
// GSL.assert: assertions
//
namespace gsl
{
struct fail_fast : public std::logic_error
{
explicit fail_fast(char const* const message) : std::logic_error(message) {}
};
}
#if defined(GSL_THROW_ON_CONTRACT_VIOLATION)
#define GSL_CONTRACT_CHECK(type, cond) \
(GSL_LIKELY(cond) ? static_cast<void>(0) \
: throw gsl::fail_fast("GSL: " type " failure at " __FILE__ \
": " GSL_STRINGIFY(__LINE__)))
#elif defined(GSL_TERMINATE_ON_CONTRACT_VIOLATION)
#define GSL_CONTRACT_CHECK(type, cond) (GSL_LIKELY(cond) ? static_cast<void>(0) : std::terminate())
#elif defined(GSL_UNENFORCED_ON_CONTRACT_VIOLATION)
#define GSL_CONTRACT_CHECK(type, cond) GSL_ASSUME(cond)
#endif
#define Expects(cond) GSL_CONTRACT_CHECK("Precondition", cond)
#define Ensures(cond) GSL_CONTRACT_CHECK("Postcondition", cond)
#endif // GSL_CONTRACTS_H

View File

@ -0,0 +1,174 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_BYTE_H
#define GSL_BYTE_H
#include <type_traits>
#ifdef _MSC_VER
#pragma warning(push)
// don't warn about function style casts in byte related operators
#pragma warning(disable : 26493)
#ifndef GSL_USE_STD_BYTE
// this tests if we are under MSVC and the standard lib has std::byte and it is enabled
#if defined(_HAS_STD_BYTE) && _HAS_STD_BYTE
#define GSL_USE_STD_BYTE 1
#else // defined(_HAS_STD_BYTE) && _HAS_STD_BYTE
#define GSL_USE_STD_BYTE 0
#endif // defined(_HAS_STD_BYTE) && _HAS_STD_BYTE
#endif // GSL_USE_STD_BYTE
#else // _MSC_VER
#ifndef GSL_USE_STD_BYTE
// this tests if we are under GCC or Clang with enough -std:c++1z power to get us std::byte
#if defined(__cplusplus) && (__cplusplus >= 201703L)
#define GSL_USE_STD_BYTE 1
#include <cstddef>
#else // defined(__cplusplus) && (__cplusplus >= 201703L)
#define GSL_USE_STD_BYTE 0
#endif //defined(__cplusplus) && (__cplusplus >= 201703L)
#endif // GSL_USE_STD_BYTE
#endif // _MSC_VER
namespace gsl
{
#if GSL_USE_STD_BYTE
using std::byte;
using std::to_integer;
#else // GSL_USE_STD_BYTE
// This is a simple definition for now that allows
// use of byte within span<> to be standards-compliant
enum class byte : unsigned char
{
};
template <class IntegerType, class = std::enable_if_t<std::is_integral<IntegerType>::value>>
inline constexpr byte& operator<<=(byte& b, IntegerType shift) noexcept
{
return b = byte(static_cast<unsigned char>(b) << shift);
}
template <class IntegerType, class = std::enable_if_t<std::is_integral<IntegerType>::value>>
inline constexpr byte operator<<(byte b, IntegerType shift) noexcept
{
return byte(static_cast<unsigned char>(b) << shift);
}
template <class IntegerType, class = std::enable_if_t<std::is_integral<IntegerType>::value>>
inline constexpr byte& operator>>=(byte& b, IntegerType shift) noexcept
{
return b = byte(static_cast<unsigned char>(b) >> shift);
}
template <class IntegerType, class = std::enable_if_t<std::is_integral<IntegerType>::value>>
inline constexpr byte operator>>(byte b, IntegerType shift) noexcept
{
return byte(static_cast<unsigned char>(b) >> shift);
}
inline constexpr byte& operator|=(byte& l, byte r) noexcept
{
return l = byte(static_cast<unsigned char>(l) | static_cast<unsigned char>(r));
}
inline constexpr byte operator|(byte l, byte r) noexcept
{
return byte(static_cast<unsigned char>(l) | static_cast<unsigned char>(r));
}
inline constexpr byte& operator&=(byte& l, byte r) noexcept
{
return l = byte(static_cast<unsigned char>(l) & static_cast<unsigned char>(r));
}
inline constexpr byte operator&(byte l, byte r) noexcept
{
return byte(static_cast<unsigned char>(l) & static_cast<unsigned char>(r));
}
inline constexpr byte& operator^=(byte& l, byte r) noexcept
{
return l = byte(static_cast<unsigned char>(l) ^ static_cast<unsigned char>(r));
}
inline constexpr byte operator^(byte l, byte r) noexcept
{
return byte(static_cast<unsigned char>(l) ^ static_cast<unsigned char>(r));
}
inline constexpr byte operator~(byte b) noexcept { return byte(~static_cast<unsigned char>(b)); }
template <class IntegerType, class = std::enable_if_t<std::is_integral<IntegerType>::value>>
inline constexpr IntegerType to_integer(byte b) noexcept
{
return static_cast<IntegerType>(b);
}
#endif // GSL_USE_STD_BYTE
template <bool E, typename T>
inline constexpr byte to_byte_impl(T t) noexcept
{
static_assert(
E, "gsl::to_byte(t) must be provided an unsigned char, otherwise data loss may occur. "
"If you are calling to_byte with an integer contant use: gsl::to_byte<t>() version.");
return static_cast<byte>(t);
}
template <>
inline constexpr byte to_byte_impl<true, unsigned char>(unsigned char t) noexcept
{
return byte(t);
}
template <typename T>
inline constexpr byte to_byte(T t) noexcept
{
return to_byte_impl<std::is_same<T, unsigned char>::value, T>(t);
}
template <int I>
inline constexpr byte to_byte() noexcept
{
static_assert(I >= 0 && I <= 255,
"gsl::byte only has 8 bits of storage, values must be in range 0-255");
return static_cast<byte>(I);
}
} // namespace gsl
#ifdef _MSC_VER
#pragma warning(pop)
#endif // _MSC_VER
#endif // GSL_BYTE_H

View File

@ -0,0 +1,151 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_UTIL_H
#define GSL_UTIL_H
#include <gsl/gsl_assert> // Ensures/Expects
#include <array>
#include <exception>
#include <type_traits>
#include <utility>
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#if _MSC_VER < 1910
#pragma push_macro("constexpr")
#define constexpr /*constexpr*/
#endif // _MSC_VER < 1910
#endif // _MSC_VER
namespace gsl
{
//
// GSL.util: utilities
//
// final_act allows you to ensure something gets run at the end of a scope
template <class F>
class final_act
{
public:
explicit final_act(F f) noexcept : f_(std::move(f)), invoke_(true) {}
final_act(final_act&& other) noexcept : f_(std::move(other.f_)), invoke_(other.invoke_)
{
other.invoke_ = false;
}
final_act(const final_act&) = delete;
final_act& operator=(const final_act&) = delete;
~final_act() noexcept
{
if (invoke_) f_();
}
private:
F f_;
bool invoke_;
};
// finally() - convenience function to generate a final_act
template <class F>
inline final_act<F> finally(const F& f) noexcept
{
return final_act<F>(f);
}
template <class F>
inline final_act<F> finally(F&& f) noexcept
{
return final_act<F>(std::forward<F>(f));
}
// narrow_cast(): a searchable way to do narrowing casts of values
template <class T, class U>
inline constexpr T narrow_cast(U&& u) noexcept
{
return static_cast<T>(std::forward<U>(u));
}
struct narrowing_error : public std::exception
{
};
namespace details
{
template <class T, class U>
struct is_same_signedness
: public std::integral_constant<bool, std::is_signed<T>::value == std::is_signed<U>::value>
{
};
}
// narrow() : a checked version of narrow_cast() that throws if the cast changed the value
template <class T, class U>
inline T narrow(U u)
{
T t = narrow_cast<T>(u);
if (static_cast<U>(t) != u) throw narrowing_error();
if (!details::is_same_signedness<T, U>::value && ((t < T{}) != (u < U{})))
throw narrowing_error();
return t;
}
//
// at() - Bounds-checked way of accessing builtin arrays, std::array, std::vector
//
template <class T, std::size_t N>
inline constexpr T& at(T (&arr)[N], const std::ptrdiff_t index)
{
Expects(index >= 0 && index < narrow_cast<std::ptrdiff_t>(N));
return arr[static_cast<std::size_t>(index)];
}
template <class Cont>
inline constexpr auto at(Cont& cont, const std::ptrdiff_t index) -> decltype(cont[cont.size()])
{
Expects(index >= 0 && index < narrow_cast<std::ptrdiff_t>(cont.size()));
using size_type = decltype(cont.size());
return cont[static_cast<size_type>(index)];
}
template <class T>
inline constexpr T at(const std::initializer_list<T> cont, const std::ptrdiff_t index)
{
Expects(index >= 0 && index < narrow_cast<std::ptrdiff_t>(cont.size()));
return *(cont.begin() + index);
}
} // namespace gsl
#if defined(_MSC_VER)
#if _MSC_VER < 1910
#undef constexpr
#pragma pop_macro("constexpr")
#endif // _MSC_VER < 1910
#pragma warning(pop)
#endif // _MSC_VER
#endif // GSL_UTIL_H

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,184 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_POINTERS_H
#define GSL_POINTERS_H
#include <gsl/gsl_assert>
#include <iosfwd>
#include <memory>
#include <type_traits>
#if defined(_MSC_VER) && _MSC_VER < 1910
#pragma push_macro("constexpr")
#define constexpr /*constexpr*/
#endif // defined(_MSC_VER) && _MSC_VER < 1910
namespace gsl
{
//
// GSL.owner: ownership pointers
//
using std::unique_ptr;
using std::shared_ptr;
//
// owner
//
// owner<T> is designed as a bridge for code that must deal directly with owning pointers for some reason
//
// T must be a pointer type
// - disallow construction from any type other than pointer type
//
template <class T, class = std::enable_if_t<std::is_pointer<T>::value>>
using owner = T;
//
// not_null
//
// Restricts a pointer or smart pointer to only hold non-null values.
//
// Has zero size overhead over T.
//
// If T is a pointer (i.e. T == U*) then
// - allow construction from U*
// - disallow construction from nullptr_t
// - disallow default construction
// - ensure construction from null U* fails
// - allow implicit conversion to U*
//
template <class T>
class not_null
{
public:
static_assert(std::is_assignable<T&, std::nullptr_t>::value, "T cannot be assigned nullptr.");
template <typename U, typename = std::enable_if_t<std::is_convertible<U, T>::value>>
constexpr not_null(U&& u) : ptr_(std::forward<U>(u))
{
Expects(ptr_ != nullptr);
}
template <typename U, typename = std::enable_if_t<std::is_convertible<U, T>::value>>
constexpr not_null(const not_null<U>& other) : not_null(other.get())
{
}
not_null(const not_null& other) = default;
not_null& operator=(const not_null& other) = default;
constexpr T get() const
{
Ensures(ptr_ != nullptr);
return ptr_;
}
constexpr operator T() const { return get(); }
constexpr T operator->() const { return get(); }
constexpr decltype(auto) operator*() const { return *get(); }
// prevents compilation when someone attempts to assign a null pointer constant
not_null(std::nullptr_t) = delete;
not_null& operator=(std::nullptr_t) = delete;
// unwanted operators...pointers only point to single objects!
not_null& operator++() = delete;
not_null& operator--() = delete;
not_null operator++(int) = delete;
not_null operator--(int) = delete;
not_null& operator+=(std::ptrdiff_t) = delete;
not_null& operator-=(std::ptrdiff_t) = delete;
void operator[](std::ptrdiff_t) const = delete;
private:
T ptr_;
};
template <class T>
std::ostream& operator<<(std::ostream& os, const not_null<T>& val)
{
os << val.get();
return os;
}
template <class T, class U>
auto operator==(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() == rhs.get())
{
return lhs.get() == rhs.get();
}
template <class T, class U>
auto operator!=(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() != rhs.get())
{
return lhs.get() != rhs.get();
}
template <class T, class U>
auto operator<(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() < rhs.get())
{
return lhs.get() < rhs.get();
}
template <class T, class U>
auto operator<=(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() <= rhs.get())
{
return lhs.get() <= rhs.get();
}
template <class T, class U>
auto operator>(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() > rhs.get())
{
return lhs.get() > rhs.get();
}
template <class T, class U>
auto operator>=(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() >= rhs.get())
{
return lhs.get() >= rhs.get();
}
// more unwanted operators
template <class T, class U>
std::ptrdiff_t operator-(const not_null<T>&, const not_null<U>&) = delete;
template <class T>
not_null<T> operator-(const not_null<T>&, std::ptrdiff_t) = delete;
template <class T>
not_null<T> operator+(const not_null<T>&, std::ptrdiff_t) = delete;
template <class T>
not_null<T> operator+(std::ptrdiff_t, const not_null<T>&) = delete;
} // namespace gsl
namespace std
{
template <class T>
struct hash<gsl::not_null<T>>
{
std::size_t operator()(const gsl::not_null<T>& value) const { return hash<T>{}(value); }
};
} // namespace std
#if defined(_MSC_VER) && _MSC_VER < 1910
#undef constexpr
#pragma pop_macro("constexpr")
#endif // defined(_MSC_VER) && _MSC_VER < 1910
#endif // GSL_POINTERS_H

714
Telegram/ThirdParty/GSL/include/gsl/span vendored Normal file
View File

@ -0,0 +1,714 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_SPAN_H
#define GSL_SPAN_H
#include <gsl/gsl_assert>
#include <gsl/gsl_byte>
#include <gsl/gsl_util>
#include <array>
#include <iterator>
#include <limits>
#include <memory>
#include <stdexcept>
#include <type_traits>
#include <utility>
#ifdef _MSC_VER
#pragma warning(push)
// turn off some warnings that are noisy about our Expects statements
#pragma warning(disable : 4127) // conditional expression is constant
#pragma warning(disable : 4702) // unreachable code
// blanket turn off warnings from CppCoreCheck for now
// so people aren't annoyed by them when running the tool.
// more targeted suppressions will be added in a future update to the GSL
#pragma warning(disable : 26481 26482 26483 26485 26490 26491 26492 26493 26495)
#if _MSC_VER < 1910
#pragma push_macro("constexpr")
#define constexpr /*constexpr*/
#endif // _MSC_VER < 1910
#endif // _MSC_VER
#ifdef GSL_THROW_ON_CONTRACT_VIOLATION
#define GSL_NOEXCEPT /*noexcept*/
#else
#define GSL_NOEXCEPT noexcept
#endif // GSL_THROW_ON_CONTRACT_VIOLATION
namespace gsl
{
// [views.constants], constants
constexpr const std::ptrdiff_t dynamic_extent = -1;
template <class ElementType, std::ptrdiff_t Extent = dynamic_extent>
class span;
// implementation details
namespace details
{
template <class T>
struct is_span_oracle : std::false_type
{
};
template <class ElementType, std::ptrdiff_t Extent>
struct is_span_oracle<gsl::span<ElementType, Extent>> : std::true_type
{
};
template <class T>
struct is_span : public is_span_oracle<std::remove_cv_t<T>>
{
};
template <class T>
struct is_std_array_oracle : std::false_type
{
};
template <class ElementType, std::size_t Extent>
struct is_std_array_oracle<std::array<ElementType, Extent>> : std::true_type
{
};
template <class T>
struct is_std_array : public is_std_array_oracle<std::remove_cv_t<T>>
{
};
template <std::ptrdiff_t From, std::ptrdiff_t To>
struct is_allowed_extent_conversion
: public std::integral_constant<bool, From == To || From == gsl::dynamic_extent ||
To == gsl::dynamic_extent>
{
};
template <class From, class To>
struct is_allowed_element_type_conversion
: public std::integral_constant<bool, std::is_convertible<From (*)[], To (*)[]>::value>
{
};
template <class Span, bool IsConst>
class span_iterator
{
using element_type_ = typename Span::element_type;
public:
using iterator_category = std::random_access_iterator_tag;
using value_type = std::remove_cv_t<element_type_>;
using difference_type = typename Span::index_type;
using reference = std::conditional_t<IsConst, const element_type_, element_type_>&;
using pointer = std::add_pointer_t<reference>;
span_iterator() = default;
constexpr span_iterator(const Span* span, typename Span::index_type index) GSL_NOEXCEPT
: span_(span), index_(index)
{
Expects(span == nullptr || (0 <= index_ && index <= span_->length()));
}
friend span_iterator<Span, true>;
template<bool B, std::enable_if_t<!B && IsConst>* = nullptr>
constexpr span_iterator(const span_iterator<Span, B>& other) GSL_NOEXCEPT
: span_iterator(other.span_, other.index_)
{
}
constexpr reference operator*() const GSL_NOEXCEPT
{
Expects(index_ != span_->length());
return *(span_->data() + index_);
}
constexpr pointer operator->() const GSL_NOEXCEPT
{
Expects(index_ != span_->length());
return span_->data() + index_;
}
constexpr span_iterator& operator++() GSL_NOEXCEPT
{
Expects(0 <= index_ && index_ != span_->length());
++index_;
return *this;
}
constexpr span_iterator operator++(int) GSL_NOEXCEPT
{
auto ret = *this;
++(*this);
return ret;
}
constexpr span_iterator& operator--() GSL_NOEXCEPT
{
Expects(index_ != 0 && index_ <= span_->length());
--index_;
return *this;
}
constexpr span_iterator operator--(int) GSL_NOEXCEPT
{
auto ret = *this;
--(*this);
return ret;
}
constexpr span_iterator operator+(difference_type n) const GSL_NOEXCEPT
{
auto ret = *this;
return ret += n;
}
constexpr span_iterator& operator+=(difference_type n) GSL_NOEXCEPT
{
Expects((index_ + n) >= 0 && (index_ + n) <= span_->length());
index_ += n;
return *this;
}
constexpr span_iterator operator-(difference_type n) const GSL_NOEXCEPT
{
auto ret = *this;
return ret -= n;
}
constexpr span_iterator& operator-=(difference_type n) GSL_NOEXCEPT { return *this += -n; }
constexpr difference_type operator-(const span_iterator& rhs) const GSL_NOEXCEPT
{
Expects(span_ == rhs.span_);
return index_ - rhs.index_;
}
constexpr reference operator[](difference_type n) const GSL_NOEXCEPT
{
return *(*this + n);
}
constexpr friend bool operator==(const span_iterator& lhs,
const span_iterator& rhs) GSL_NOEXCEPT
{
return lhs.span_ == rhs.span_ && lhs.index_ == rhs.index_;
}
constexpr friend bool operator!=(const span_iterator& lhs,
const span_iterator& rhs) GSL_NOEXCEPT
{
return !(lhs == rhs);
}
constexpr friend bool operator<(const span_iterator& lhs,
const span_iterator& rhs) GSL_NOEXCEPT
{
Expects(lhs.span_ == rhs.span_);
return lhs.index_ < rhs.index_;
}
constexpr friend bool operator<=(const span_iterator& lhs,
const span_iterator& rhs) GSL_NOEXCEPT
{
return !(rhs < lhs);
}
constexpr friend bool operator>(const span_iterator& lhs,
const span_iterator& rhs) GSL_NOEXCEPT
{
return rhs < lhs;
}
constexpr friend bool operator>=(const span_iterator& lhs,
const span_iterator& rhs) GSL_NOEXCEPT
{
return !(rhs > lhs);
}
protected:
const Span* span_ = nullptr;
std::ptrdiff_t index_ = 0;
};
template <class Span, bool IsConst>
inline constexpr span_iterator<Span, IsConst>
operator+(typename span_iterator<Span, IsConst>::difference_type n,
const span_iterator<Span, IsConst>& rhs) GSL_NOEXCEPT
{
return rhs + n;
}
template <class Span, bool IsConst>
inline constexpr span_iterator<Span, IsConst>
operator-(typename span_iterator<Span, IsConst>::difference_type n,
const span_iterator<Span, IsConst>& rhs) GSL_NOEXCEPT
{
return rhs - n;
}
template <std::ptrdiff_t Ext>
class extent_type
{
public:
using index_type = std::ptrdiff_t;
static_assert(Ext >= 0, "A fixed-size span must be >= 0 in size.");
constexpr extent_type() GSL_NOEXCEPT {}
template <index_type Other>
constexpr extent_type(extent_type<Other> ext)
{
static_assert(Other == Ext || Other == dynamic_extent,
"Mismatch between fixed-size extent and size of initializing data.");
Expects(ext.size() == Ext);
}
constexpr extent_type(index_type size) { Expects(size == Ext); }
constexpr index_type size() const GSL_NOEXCEPT { return Ext; }
};
template <>
class extent_type<dynamic_extent>
{
public:
using index_type = std::ptrdiff_t;
template <index_type Other>
explicit constexpr extent_type(extent_type<Other> ext) : size_(ext.size())
{
}
explicit constexpr extent_type(index_type size) : size_(size) { Expects(size >= 0); }
constexpr index_type size() const GSL_NOEXCEPT { return size_; }
private:
index_type size_;
};
} // namespace details
// [span], class template span
template <class ElementType, std::ptrdiff_t Extent>
class span
{
public:
// constants and types
using element_type = ElementType;
using value_type = std::remove_cv_t<ElementType>;
using index_type = std::ptrdiff_t;
using pointer = element_type*;
using reference = element_type&;
using iterator = details::span_iterator<span<ElementType, Extent>, false>;
using const_iterator = details::span_iterator<span<ElementType, Extent>, true>;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using size_type = index_type;
constexpr static const index_type extent = Extent;
// [span.cons], span constructors, copy, assignment, and destructor
template <bool Dependent = false,
// "Dependent" is needed to make "std::enable_if_t<Dependent || Extent <= 0>" SFINAE,
// since "std::enable_if_t<Extent <= 0>" is ill-formed when Extent is greater than 0.
class = std::enable_if_t<(Dependent || Extent <= 0)>>
constexpr span() GSL_NOEXCEPT : storage_(nullptr, details::extent_type<0>())
{
}
constexpr span(std::nullptr_t) GSL_NOEXCEPT : span() {}
constexpr span(pointer ptr, index_type count) : storage_(ptr, count) {}
constexpr span(pointer firstElem, pointer lastElem)
: storage_(firstElem, std::distance(firstElem, lastElem))
{
}
template <std::size_t N>
constexpr span(element_type (&arr)[N]) GSL_NOEXCEPT
: storage_(&arr[0], details::extent_type<N>())
{
}
template <std::size_t N, class ArrayElementType = std::remove_const_t<element_type>>
constexpr span(std::array<ArrayElementType, N>& arr) GSL_NOEXCEPT
: storage_(&arr[0], details::extent_type<N>())
{
}
template <std::size_t N>
constexpr span(const std::array<std::remove_const_t<element_type>, N>& arr) GSL_NOEXCEPT
: storage_(&arr[0], details::extent_type<N>())
{
}
template <class ArrayElementType = std::add_pointer<element_type>>
constexpr span(const std::unique_ptr<ArrayElementType>& ptr, index_type count)
: storage_(ptr.get(), count)
{
}
constexpr span(const std::unique_ptr<ElementType>& ptr) : storage_(ptr.get(), ptr.get() ? 1 : 0)
{
}
constexpr span(const std::shared_ptr<ElementType>& ptr) : storage_(ptr.get(), ptr.get() ? 1 : 0)
{
}
// NB: the SFINAE here uses .data() as a incomplete/imperfect proxy for the requirement
// on Container to be a contiguous sequence container.
template <class Container,
class = std::enable_if_t<
!details::is_span<Container>::value && !details::is_std_array<Container>::value &&
std::is_convertible<typename Container::pointer, pointer>::value &&
std::is_convertible<typename Container::pointer,
decltype(std::declval<Container>().data())>::value>>
constexpr span(Container& cont) : span(cont.data(), narrow<index_type>(cont.size()))
{
}
template <class Container,
class = std::enable_if_t<
std::is_const<element_type>::value && !details::is_span<Container>::value &&
std::is_convertible<typename Container::pointer, pointer>::value &&
std::is_convertible<typename Container::pointer,
decltype(std::declval<Container>().data())>::value>>
constexpr span(const Container& cont) : span(cont.data(), narrow<index_type>(cont.size()))
{
}
constexpr span(const span& other) GSL_NOEXCEPT = default;
constexpr span(span&& other) GSL_NOEXCEPT = default;
template <
class OtherElementType, std::ptrdiff_t OtherExtent,
class = std::enable_if_t<
details::is_allowed_extent_conversion<OtherExtent, Extent>::value &&
details::is_allowed_element_type_conversion<OtherElementType, element_type>::value>>
constexpr span(const span<OtherElementType, OtherExtent>& other)
: storage_(other.data(), details::extent_type<OtherExtent>(other.size()))
{
}
template <
class OtherElementType, std::ptrdiff_t OtherExtent,
class = std::enable_if_t<
details::is_allowed_extent_conversion<OtherExtent, Extent>::value &&
details::is_allowed_element_type_conversion<OtherElementType, element_type>::value>>
constexpr span(span<OtherElementType, OtherExtent>&& other)
: storage_(other.data(), details::extent_type<OtherExtent>(other.size()))
{
}
~span() GSL_NOEXCEPT = default;
constexpr span& operator=(const span& other) GSL_NOEXCEPT = default;
constexpr span& operator=(span&& other) GSL_NOEXCEPT = default;
// [span.sub], span subviews
template <std::ptrdiff_t Count>
constexpr span<element_type, Count> first() const
{
Expects(Count >= 0 && Count <= size());
return {data(), Count};
}
template <std::ptrdiff_t Count>
constexpr span<element_type, Count> last() const
{
Expects(Count >= 0 && size() - Count >= 0);
return {data() + (size() - Count), Count};
}
template <std::ptrdiff_t Offset, std::ptrdiff_t Count = dynamic_extent>
constexpr span<element_type, Count> subspan() const
{
Expects((Offset >= 0 && size() - Offset >= 0) &&
(Count == dynamic_extent || (Count >= 0 && Offset + Count <= size())));
return {data() + Offset, Count == dynamic_extent ? size() - Offset : Count};
}
constexpr span<element_type, dynamic_extent> first(index_type count) const
{
Expects(count >= 0 && count <= size());
return {data(), count};
}
constexpr span<element_type, dynamic_extent> last(index_type count) const
{
return make_subspan(size() - count, dynamic_extent, subspan_selector<Extent>{});
}
constexpr span<element_type, dynamic_extent> subspan(index_type offset,
index_type count = dynamic_extent) const
{
return make_subspan(offset, count, subspan_selector<Extent>{});
}
// [span.obs], span observers
constexpr index_type length() const GSL_NOEXCEPT { return size(); }
constexpr index_type size() const GSL_NOEXCEPT { return storage_.size(); }
constexpr index_type length_bytes() const GSL_NOEXCEPT { return size_bytes(); }
constexpr index_type size_bytes() const GSL_NOEXCEPT
{
return size() * narrow_cast<index_type>(sizeof(element_type));
}
constexpr bool empty() const GSL_NOEXCEPT { return size() == 0; }
// [span.elem], span element access
constexpr reference operator[](index_type idx) const
{
Expects(idx >= 0 && idx < storage_.size());
return data()[idx];
}
constexpr reference at(index_type idx) const { return this->operator[](idx); }
constexpr reference operator()(index_type idx) const { return this->operator[](idx); }
constexpr pointer data() const GSL_NOEXCEPT { return storage_.data(); }
// [span.iter], span iterator support
iterator begin() const GSL_NOEXCEPT { return {this, 0}; }
iterator end() const GSL_NOEXCEPT { return {this, length()}; }
const_iterator cbegin() const GSL_NOEXCEPT { return {this, 0}; }
const_iterator cend() const GSL_NOEXCEPT { return {this, length()}; }
reverse_iterator rbegin() const GSL_NOEXCEPT { return reverse_iterator{end()}; }
reverse_iterator rend() const GSL_NOEXCEPT { return reverse_iterator{begin()}; }
const_reverse_iterator crbegin() const GSL_NOEXCEPT { return const_reverse_iterator{cend()}; }
const_reverse_iterator crend() const GSL_NOEXCEPT { return const_reverse_iterator{cbegin()}; }
private:
// this implementation detail class lets us take advantage of the
// empty base class optimization to pay for only storage of a single
// pointer in the case of fixed-size spans
template <class ExtentType>
class storage_type : public ExtentType
{
public:
// checked parameter is needed to remove unnecessary null check in subspans
template <class OtherExtentType>
constexpr storage_type(pointer data, OtherExtentType ext, bool checked = false) : ExtentType(ext), data_(data)
{
Expects(((checked || !data) && ExtentType::size() == 0) ||
((checked || data) && ExtentType::size() >= 0));
}
constexpr pointer data() const GSL_NOEXCEPT { return data_; }
private:
pointer data_;
};
storage_type<details::extent_type<Extent>> storage_;
// The rest is needed to remove unnecessary null check in subspans
constexpr span(pointer ptr, index_type count, bool checked) : storage_(ptr, count, checked) {}
template <std::ptrdiff_t CallerExtent>
class subspan_selector {};
template <std::ptrdiff_t CallerExtent>
span<element_type, dynamic_extent> make_subspan(index_type offset,
index_type count,
subspan_selector<CallerExtent>) const GSL_NOEXCEPT
{
span<element_type, dynamic_extent> tmp(*this);
return tmp.subspan(offset, count);
}
span<element_type, dynamic_extent> make_subspan(index_type offset,
index_type count,
subspan_selector<dynamic_extent>) const GSL_NOEXCEPT
{
Expects(offset >= 0 && size() - offset >= 0);
if (count == dynamic_extent)
{
return { data() + offset, size() - offset, true };
}
Expects(count >= 0 && size() - offset >= count);
return { data() + offset, count, true };
}
};
// [span.comparison], span comparison operators
template <class ElementType, std::ptrdiff_t FirstExtent, std::ptrdiff_t SecondExtent>
inline constexpr bool operator==(const span<ElementType, FirstExtent>& l,
const span<ElementType, SecondExtent>& r)
{
return std::equal(l.begin(), l.end(), r.begin(), r.end());
}
template <class ElementType, std::ptrdiff_t Extent>
inline constexpr bool operator!=(const span<ElementType, Extent>& l,
const span<ElementType, Extent>& r)
{
return !(l == r);
}
template <class ElementType, std::ptrdiff_t Extent>
inline constexpr bool operator<(const span<ElementType, Extent>& l,
const span<ElementType, Extent>& r)
{
return std::lexicographical_compare(l.begin(), l.end(), r.begin(), r.end());
}
template <class ElementType, std::ptrdiff_t Extent>
inline constexpr bool operator<=(const span<ElementType, Extent>& l,
const span<ElementType, Extent>& r)
{
return !(l > r);
}
template <class ElementType, std::ptrdiff_t Extent>
inline constexpr bool operator>(const span<ElementType, Extent>& l,
const span<ElementType, Extent>& r)
{
return r < l;
}
template <class ElementType, std::ptrdiff_t Extent>
inline constexpr bool operator>=(const span<ElementType, Extent>& l,
const span<ElementType, Extent>& r)
{
return !(l < r);
}
namespace details
{
// if we only supported compilers with good constexpr support then
// this pair of classes could collapse down to a constexpr function
// we should use a narrow_cast<> to go to std::size_t, but older compilers may not see it as
// constexpr
// and so will fail compilation of the template
template <class ElementType, std::ptrdiff_t Extent>
struct calculate_byte_size
: std::integral_constant<std::ptrdiff_t,
static_cast<std::ptrdiff_t>(sizeof(ElementType) *
static_cast<std::size_t>(Extent))>
{
};
template <class ElementType>
struct calculate_byte_size<ElementType, dynamic_extent>
: std::integral_constant<std::ptrdiff_t, dynamic_extent>
{
};
}
// [span.objectrep], views of object representation
template <class ElementType, std::ptrdiff_t Extent>
span<const byte, details::calculate_byte_size<ElementType, Extent>::value>
as_bytes(span<ElementType, Extent> s) GSL_NOEXCEPT
{
return {reinterpret_cast<const byte*>(s.data()), s.size_bytes()};
}
template <class ElementType, std::ptrdiff_t Extent,
class = std::enable_if_t<!std::is_const<ElementType>::value>>
span<byte, details::calculate_byte_size<ElementType, Extent>::value>
as_writeable_bytes(span<ElementType, Extent> s) GSL_NOEXCEPT
{
return {reinterpret_cast<byte*>(s.data()), s.size_bytes()};
}
//
// make_span() - Utility functions for creating spans
//
template <class ElementType>
span<ElementType> make_span(ElementType* ptr, typename span<ElementType>::index_type count)
{
return span<ElementType>(ptr, count);
}
template <class ElementType>
span<ElementType> make_span(ElementType* firstElem, ElementType* lastElem)
{
return span<ElementType>(firstElem, lastElem);
}
template <class ElementType, std::size_t N>
span<ElementType, N> make_span(ElementType (&arr)[N])
{
return span<ElementType, N>(arr);
}
template <class Container>
span<typename Container::value_type> make_span(Container& cont)
{
return span<typename Container::value_type>(cont);
}
template <class Container>
span<const typename Container::value_type> make_span(const Container& cont)
{
return span<const typename Container::value_type>(cont);
}
template <class Ptr>
span<typename Ptr::element_type> make_span(Ptr& cont, std::ptrdiff_t count)
{
return span<typename Ptr::element_type>(cont, count);
}
template <class Ptr>
span<typename Ptr::element_type> make_span(Ptr& cont)
{
return span<typename Ptr::element_type>(cont);
}
// Specialization of gsl::at for span
template <class ElementType, std::ptrdiff_t Extent>
inline constexpr ElementType& at(const span<ElementType, Extent>& s, std::ptrdiff_t index)
{
// No bounds checking here because it is done in span::operator[] called below
return s[index];
}
} // namespace gsl
#undef GSL_NOEXCEPT
#ifdef _MSC_VER
#if _MSC_VER < 1910
#undef constexpr
#pragma pop_macro("constexpr")
#endif // _MSC_VER < 1910
#pragma warning(pop)
#endif // _MSC_VER
#endif // GSL_SPAN_H

View File

@ -0,0 +1,721 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_STRING_SPAN_H
#define GSL_STRING_SPAN_H
#include <gsl/gsl_assert>
#include <gsl/gsl_util>
#include <gsl/span>
#include <cstdint>
#include <cstring>
#include <string>
#ifdef _MSC_VER
#pragma warning(push)
// blanket turn off warnings from CppCoreCheck for now
// so people aren't annoyed by them when running the tool.
// more targeted suppressions will be added in a future update to the GSL
#pragma warning(disable : 26481 26482 26483 26485 26490 26491 26492 26493 26495)
#if _MSC_VER < 1910
#pragma push_macro("constexpr")
#define constexpr /*constexpr*/
#endif // _MSC_VER < 1910
#endif // _MSC_VER
// In order to test the library, we need it to throw exceptions that we can catch
#ifdef GSL_THROW_ON_CONTRACT_VIOLATION
#define GSL_NOEXCEPT /*noexcept*/
#else
#define GSL_NOEXCEPT noexcept
#endif // GSL_THROW_ON_CONTRACT_VIOLATION
namespace gsl
{
//
// czstring and wzstring
//
// These are "tag" typedefs for C-style strings (i.e. null-terminated character arrays)
// that allow static analysis to help find bugs.
//
// There are no additional features/semantics that we can find a way to add inside the
// type system for these types that will not either incur significant runtime costs or
// (sometimes needlessly) break existing programs when introduced.
//
template <typename CharT, std::ptrdiff_t Extent = dynamic_extent>
using basic_zstring = CharT*;
template <std::ptrdiff_t Extent = dynamic_extent>
using czstring = basic_zstring<const char, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using cwzstring = basic_zstring<const wchar_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using cu16zstring = basic_zstring<const char16_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using cu32zstring = basic_zstring<const char32_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using zstring = basic_zstring<char, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using wzstring = basic_zstring<wchar_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using u16zstring = basic_zstring<char16_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using u32zstring = basic_zstring<char32_t, Extent>;
namespace details
{
template <class CharT>
std::ptrdiff_t string_length(const CharT* str, std::ptrdiff_t n)
{
if (str == nullptr || n <= 0) return 0;
span<const CharT> str_span{str, n};
std::ptrdiff_t len = 0;
while (len < n && str_span[len]) len++;
return len;
}
}
//
// ensure_sentinel()
//
// Provides a way to obtain an span from a contiguous sequence
// that ends with a (non-inclusive) sentinel value.
//
// Will fail-fast if sentinel cannot be found before max elements are examined.
//
template <typename T, const T Sentinel>
span<T, dynamic_extent> ensure_sentinel(T* seq, std::ptrdiff_t max = PTRDIFF_MAX)
{
auto cur = seq;
while ((cur - seq) < max && *cur != Sentinel) ++cur;
Ensures(*cur == Sentinel);
return {seq, cur - seq};
}
//
// ensure_z - creates a span for a zero terminated strings.
// Will fail fast if a null-terminator cannot be found before
// the limit of size_type.
//
template <typename CharT>
inline span<CharT, dynamic_extent> ensure_z(CharT* const& sz, std::ptrdiff_t max = PTRDIFF_MAX)
{
return ensure_sentinel<CharT, CharT(0)>(sz, max);
}
template <typename CharT, std::size_t N>
span<CharT, dynamic_extent> ensure_z(CharT (&sz)[N])
{
return ensure_z(&sz[0], static_cast<std::ptrdiff_t>(N));
}
template <class Cont>
span<typename std::remove_pointer<typename Cont::pointer>::type, dynamic_extent>
ensure_z(Cont& cont)
{
return ensure_z(cont.data(), static_cast<std::ptrdiff_t>(cont.length()));
}
template <typename CharT, std::ptrdiff_t>
class basic_string_span;
namespace details
{
template <typename T>
struct is_basic_string_span_oracle : std::false_type
{
};
template <typename CharT, std::ptrdiff_t Extent>
struct is_basic_string_span_oracle<basic_string_span<CharT, Extent>> : std::true_type
{
};
template <typename T>
struct is_basic_string_span : is_basic_string_span_oracle<std::remove_cv_t<T>>
{
};
}
//
// string_span and relatives
//
template <typename CharT, std::ptrdiff_t Extent = dynamic_extent>
class basic_string_span
{
public:
using element_type = CharT;
using pointer = std::add_pointer_t<element_type>;
using reference = std::add_lvalue_reference_t<element_type>;
using const_reference = std::add_lvalue_reference_t<std::add_const_t<element_type>>;
using impl_type = span<element_type, Extent>;
using index_type = typename impl_type::index_type;
using iterator = typename impl_type::iterator;
using const_iterator = typename impl_type::const_iterator;
using reverse_iterator = typename impl_type::reverse_iterator;
using const_reverse_iterator = typename impl_type::const_reverse_iterator;
// default (empty)
constexpr basic_string_span() GSL_NOEXCEPT = default;
// copy
constexpr basic_string_span(const basic_string_span& other) GSL_NOEXCEPT = default;
// move
constexpr basic_string_span(basic_string_span&& other) GSL_NOEXCEPT = default;
// assign
constexpr basic_string_span& operator=(const basic_string_span& other) GSL_NOEXCEPT = default;
// move assign
constexpr basic_string_span& operator=(basic_string_span&& other) GSL_NOEXCEPT = default;
// from nullptr
constexpr basic_string_span(std::nullptr_t ptr) GSL_NOEXCEPT : span_(ptr) {}
constexpr basic_string_span(pointer ptr, index_type length) : span_(ptr, length) {}
constexpr basic_string_span(pointer firstElem, pointer lastElem) : span_(firstElem, lastElem) {}
// From static arrays - if 0-terminated, remove 0 from the view
// All other containers allow 0s within the length, so we do not remove them
template <std::size_t N>
constexpr basic_string_span(element_type (&arr)[N]) : span_(remove_z(arr))
{
}
template <std::size_t N, class ArrayElementType = std::remove_const_t<element_type>>
constexpr basic_string_span(std::array<ArrayElementType, N>& arr) GSL_NOEXCEPT : span_(arr)
{
}
template <std::size_t N, class ArrayElementType = std::remove_const_t<element_type>>
constexpr basic_string_span(const std::array<ArrayElementType, N>& arr) GSL_NOEXCEPT
: span_(arr)
{
}
// Container signature should work for basic_string after C++17 version exists
template <class Traits, class Allocator>
constexpr basic_string_span(std::basic_string<element_type, Traits, Allocator>& str)
: span_(&str[0], narrow_cast<std::ptrdiff_t>(str.length()))
{
}
template <class Traits, class Allocator>
constexpr basic_string_span(const std::basic_string<element_type, Traits, Allocator>& str)
: span_(&str[0], str.length())
{
}
// from containers. Containers must have a pointer type and data() function signatures
template <class Container,
class = std::enable_if_t<
!details::is_basic_string_span<Container>::value &&
std::is_convertible<typename Container::pointer, pointer>::value &&
std::is_convertible<typename Container::pointer,
decltype(std::declval<Container>().data())>::value>>
constexpr basic_string_span(Container& cont) : span_(cont)
{
}
template <class Container,
class = std::enable_if_t<
!details::is_basic_string_span<Container>::value &&
std::is_convertible<typename Container::pointer, pointer>::value &&
std::is_convertible<typename Container::pointer,
decltype(std::declval<Container>().data())>::value>>
constexpr basic_string_span(const Container& cont) : span_(cont)
{
}
// from string_span
template <
class OtherValueType, std::ptrdiff_t OtherExtent,
class = std::enable_if_t<std::is_convertible<
typename basic_string_span<OtherValueType, OtherExtent>::impl_type, impl_type>::value>>
constexpr basic_string_span(basic_string_span<OtherValueType, OtherExtent> other)
: span_(other.data(), other.length())
{
}
template <index_type Count>
constexpr basic_string_span<element_type, Count> first() const
{
return {span_.template first<Count>()};
}
constexpr basic_string_span<element_type, dynamic_extent> first(index_type count) const
{
return {span_.first(count)};
}
template <index_type Count>
constexpr basic_string_span<element_type, Count> last() const
{
return {span_.template last<Count>()};
}
constexpr basic_string_span<element_type, dynamic_extent> last(index_type count) const
{
return {span_.last(count)};
}
template <index_type Offset, index_type Count>
constexpr basic_string_span<element_type, Count> subspan() const
{
return {span_.template subspan<Offset, Count>()};
}
constexpr basic_string_span<element_type, dynamic_extent>
subspan(index_type offset, index_type count = dynamic_extent) const
{
return {span_.subspan(offset, count)};
}
constexpr reference operator[](index_type idx) const { return span_[idx]; }
constexpr reference operator()(index_type idx) const { return span_[idx]; }
constexpr pointer data() const { return span_.data(); }
constexpr index_type length() const GSL_NOEXCEPT { return span_.size(); }
constexpr index_type size() const GSL_NOEXCEPT { return span_.size(); }
constexpr index_type size_bytes() const GSL_NOEXCEPT { return span_.size_bytes(); }
constexpr index_type length_bytes() const GSL_NOEXCEPT { return span_.length_bytes(); }
constexpr bool empty() const GSL_NOEXCEPT { return size() == 0; }
constexpr iterator begin() const GSL_NOEXCEPT { return span_.begin(); }
constexpr iterator end() const GSL_NOEXCEPT { return span_.end(); }
constexpr const_iterator cbegin() const GSL_NOEXCEPT { return span_.cbegin(); }
constexpr const_iterator cend() const GSL_NOEXCEPT { return span_.cend(); }
constexpr reverse_iterator rbegin() const GSL_NOEXCEPT { return span_.rbegin(); }
constexpr reverse_iterator rend() const GSL_NOEXCEPT { return span_.rend(); }
constexpr const_reverse_iterator crbegin() const GSL_NOEXCEPT { return span_.crbegin(); }
constexpr const_reverse_iterator crend() const GSL_NOEXCEPT { return span_.crend(); }
private:
static impl_type remove_z(pointer const& sz, std::ptrdiff_t max)
{
return {sz, details::string_length(sz, max)};
}
template <std::size_t N>
static impl_type remove_z(element_type (&sz)[N])
{
return remove_z(&sz[0], narrow_cast<std::ptrdiff_t>(N));
}
impl_type span_;
};
template <std::ptrdiff_t Extent = dynamic_extent>
using string_span = basic_string_span<char, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using cstring_span = basic_string_span<const char, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using wstring_span = basic_string_span<wchar_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using cwstring_span = basic_string_span<const wchar_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using u16string_span = basic_string_span<char16_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using cu16string_span = basic_string_span<const char16_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using u32string_span = basic_string_span<char32_t, Extent>;
template <std::ptrdiff_t Extent = dynamic_extent>
using cu32string_span = basic_string_span<const char32_t, Extent>;
//
// to_string() allow (explicit) conversions from string_span to string
//
template <typename CharT, std::ptrdiff_t Extent>
std::basic_string<typename std::remove_const<CharT>::type>
to_string(basic_string_span<CharT, Extent> view)
{
return {view.data(), static_cast<std::size_t>(view.length())};
}
template <typename CharT, typename Traits = typename std::char_traits<CharT>,
typename Allocator = std::allocator<CharT>, typename gCharT, std::ptrdiff_t Extent>
std::basic_string<CharT, Traits, Allocator> to_basic_string(basic_string_span<gCharT, Extent> view)
{
return {view.data(), static_cast<std::size_t>(view.length())};
}
// zero-terminated string span, used to convert
// zero-terminated spans to legacy strings
template <typename CharT, std::ptrdiff_t Extent = dynamic_extent>
class basic_zstring_span
{
public:
using value_type = CharT;
using const_value_type = std::add_const_t<CharT>;
using pointer = std::add_pointer_t<value_type>;
using const_pointer = std::add_pointer_t<const_value_type>;
using zstring_type = basic_zstring<value_type, Extent>;
using const_zstring_type = basic_zstring<const_value_type, Extent>;
using impl_type = span<value_type, Extent>;
using string_span_type = basic_string_span<value_type, Extent>;
constexpr basic_zstring_span(impl_type s) GSL_NOEXCEPT : span_(s)
{
// expects a zero-terminated span
Expects(s[s.size() - 1] == '\0');
}
// copy
constexpr basic_zstring_span(const basic_zstring_span& other) = default;
// move
constexpr basic_zstring_span(basic_zstring_span&& other) = default;
// assign
constexpr basic_zstring_span& operator=(const basic_zstring_span& other) = default;
// move assign
constexpr basic_zstring_span& operator=(basic_zstring_span&& other) = default;
constexpr bool empty() const GSL_NOEXCEPT { return span_.size() == 0; }
constexpr string_span_type as_string_span() const GSL_NOEXCEPT
{
auto sz = span_.size();
return span_.first(sz <= 0 ? 0 : sz - 1);
}
constexpr string_span_type ensure_z() const GSL_NOEXCEPT { return gsl::ensure_z(span_); }
constexpr const_zstring_type assume_z() const GSL_NOEXCEPT { return span_.data(); }
private:
impl_type span_;
};
template <std::ptrdiff_t Max = dynamic_extent>
using zstring_span = basic_zstring_span<char, Max>;
template <std::ptrdiff_t Max = dynamic_extent>
using wzstring_span = basic_zstring_span<wchar_t, Max>;
template <std::ptrdiff_t Max = dynamic_extent>
using u16zstring_span = basic_zstring_span<char16_t, Max>;
template <std::ptrdiff_t Max = dynamic_extent>
using u32zstring_span = basic_zstring_span<char32_t, Max>;
template <std::ptrdiff_t Max = dynamic_extent>
using czstring_span = basic_zstring_span<const char, Max>;
template <std::ptrdiff_t Max = dynamic_extent>
using cwzstring_span = basic_zstring_span<const wchar_t, Max>;
template <std::ptrdiff_t Max = dynamic_extent>
using cu16zstring_span = basic_zstring_span<const char16_t, Max>;
template <std::ptrdiff_t Max = dynamic_extent>
using cu32zstring_span = basic_zstring_span<const char32_t, Max>;
// operator ==
template <class CharT, std::ptrdiff_t Extent, class T,
class = std::enable_if_t<
details::is_basic_string_span<T>::value ||
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>>>::value>>
bool operator==(const gsl::basic_string_span<CharT, Extent>& one, const T& other) GSL_NOEXCEPT
{
const gsl::basic_string_span<std::add_const_t<CharT>> tmp(other);
return std::equal(one.begin(), one.end(), tmp.begin(), tmp.end());
}
template <class CharT, std::ptrdiff_t Extent, class T,
class = std::enable_if_t<
!details::is_basic_string_span<T>::value &&
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>>>::value>>
bool operator==(const T& one, const gsl::basic_string_span<CharT, Extent>& other) GSL_NOEXCEPT
{
gsl::basic_string_span<std::add_const_t<CharT>> tmp(one);
return std::equal(tmp.begin(), tmp.end(), other.begin(), other.end());
}
// operator !=
template <typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<std::is_convertible<
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator!=(gsl::basic_string_span<CharT, Extent> one, const T& other) GSL_NOEXCEPT
{
return !(one == other);
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value &&
!gsl::details::is_basic_string_span<T>::value>>
bool operator!=(const T& one, gsl::basic_string_span<CharT, Extent> other) GSL_NOEXCEPT
{
return !(one == other);
}
// operator<
template <typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<std::is_convertible<
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator<(gsl::basic_string_span<CharT, Extent> one, const T& other) GSL_NOEXCEPT
{
const gsl::basic_string_span<std::add_const_t<CharT>, Extent> tmp(other);
return std::lexicographical_compare(one.begin(), one.end(), tmp.begin(), tmp.end());
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value &&
!gsl::details::is_basic_string_span<T>::value>>
bool operator<(const T& one, gsl::basic_string_span<CharT, Extent> other) GSL_NOEXCEPT
{
gsl::basic_string_span<std::add_const_t<CharT>, Extent> tmp(one);
return std::lexicographical_compare(tmp.begin(), tmp.end(), other.begin(), other.end());
}
#ifndef _MSC_VER
// VS treats temp and const containers as convertible to basic_string_span,
// so the cases below are already covered by the previous operators
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator<(gsl::basic_string_span<CharT, Extent> one, const T& other) GSL_NOEXCEPT
{
gsl::basic_string_span<std::add_const_t<CharT>, Extent> tmp(other);
return std::lexicographical_compare(one.begin(), one.end(), tmp.begin(), tmp.end());
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator<(const T& one, gsl::basic_string_span<CharT, Extent> other) GSL_NOEXCEPT
{
gsl::basic_string_span<std::add_const_t<CharT>, Extent> tmp(one);
return std::lexicographical_compare(tmp.begin(), tmp.end(), other.begin(), other.end());
}
#endif
// operator <=
template <typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<std::is_convertible<
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator<=(gsl::basic_string_span<CharT, Extent> one, const T& other) GSL_NOEXCEPT
{
return !(other < one);
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value &&
!gsl::details::is_basic_string_span<T>::value>>
bool operator<=(const T& one, gsl::basic_string_span<CharT, Extent> other) GSL_NOEXCEPT
{
return !(other < one);
}
#ifndef _MSC_VER
// VS treats temp and const containers as convertible to basic_string_span,
// so the cases below are already covered by the previous operators
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator<=(gsl::basic_string_span<CharT, Extent> one, const T& other) GSL_NOEXCEPT
{
return !(other < one);
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator<=(const T& one, gsl::basic_string_span<CharT, Extent> other) GSL_NOEXCEPT
{
return !(other < one);
}
#endif
// operator>
template <typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<std::is_convertible<
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator>(gsl::basic_string_span<CharT, Extent> one, const T& other) GSL_NOEXCEPT
{
return other < one;
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value &&
!gsl::details::is_basic_string_span<T>::value>>
bool operator>(const T& one, gsl::basic_string_span<CharT, Extent> other) GSL_NOEXCEPT
{
return other < one;
}
#ifndef _MSC_VER
// VS treats temp and const containers as convertible to basic_string_span,
// so the cases below are already covered by the previous operators
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator>(gsl::basic_string_span<CharT, Extent> one, const T& other) GSL_NOEXCEPT
{
return other < one;
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator>(const T& one, gsl::basic_string_span<CharT, Extent> other) GSL_NOEXCEPT
{
return other < one;
}
#endif
// operator >=
template <typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<std::is_convertible<
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator>=(gsl::basic_string_span<CharT, Extent> one, const T& other) GSL_NOEXCEPT
{
return !(one < other);
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value &&
!gsl::details::is_basic_string_span<T>::value>>
bool operator>=(const T& one, gsl::basic_string_span<CharT, Extent> other) GSL_NOEXCEPT
{
return !(one < other);
}
#ifndef _MSC_VER
// VS treats temp and const containers as convertible to basic_string_span,
// so the cases below are already covered by the previous operators
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator>=(gsl::basic_string_span<CharT, Extent> one, const T& other) GSL_NOEXCEPT
{
return !(one < other);
}
template <
typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator>=(const T& one, gsl::basic_string_span<CharT, Extent> other) GSL_NOEXCEPT
{
return !(one < other);
}
#endif
} // namespace GSL
#undef GSL_NOEXCEPT
#ifdef _MSC_VER
#pragma warning(pop)
#if _MSC_VER < 1910
#undef constexpr
#pragma pop_macro("constexpr")
#endif // _MSC_VER < 1910
#endif // _MSC_VER
#endif // GSL_STRING_SPAN_H

View File

@ -0,0 +1,103 @@
cmake_minimum_required(VERSION 2.8.7)
project(GSLTests CXX)
# will make visual studio generated project group files
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
list(APPEND CATCH_CMAKE_ARGS
"-DCMAKE_INSTALL_PREFIX=${CMAKE_BINARY_DIR}/external"
"-DNO_SELFTEST=true"
)
if(GIT_FOUND)
# add catch
ExternalProject_Add(
catch
PREFIX ${CMAKE_BINARY_DIR}/catch
GIT_REPOSITORY https://github.com/catchorg/Catch2.git
GIT_TAG v2.0.1
CMAKE_ARGS ${CATCH_CMAKE_ARGS}
LOG_DOWNLOAD 1
UPDATE_DISCONNECTED 1
)
else()
# assume catch is installed in a system directory
add_custom_target(catch)
endif()
# this interface adds compile options to how the tests are run
# please try to keep entries ordered =)
add_library(gsl_tests_config INTERFACE)
target_compile_options(gsl_tests_config INTERFACE
$<$<CXX_COMPILER_ID:MSVC>:
/EHsc
/W4
/WX
>
$<$<NOT:$<CXX_COMPILER_ID:MSVC>>:
-fno-strict-aliasing
-Wall
-Wcast-align
-Wconversion
-Wctor-dtor-privacy
-Werror
-Wextra
-Wno-missing-braces
-Wnon-virtual-dtor
-Wold-style-cast
-Woverloaded-virtual
-Wpedantic
-Wshadow
-Wsign-conversion
>
)
# for tests to find the catch header
target_include_directories(gsl_tests_config INTERFACE
${CMAKE_BINARY_DIR}/external/include
)
# set definitions for tests
target_compile_definitions(gsl_tests_config INTERFACE
GSL_THROW_ON_CONTRACT_VIOLATION
)
# create the main executable for each test. this reduces the compile time
# of each test by pre-compiling catch.
add_library(test_catch STATIC test.cpp)
target_link_libraries(test_catch
GSL
gsl_tests_config
)
add_dependencies(test_catch catch)
set_property(TARGET test_catch PROPERTY FOLDER "GSL_tests")
function(add_gsl_test name)
add_executable(${name} ${name}.cpp)
target_link_libraries(${name}
GSL
test_catch
gsl_tests_config
)
add_dependencies(${name} catch)
add_test(
${name}
${name}
)
# group all tests under GSL_tests
set_property(TARGET ${name} PROPERTY FOLDER "GSL_tests")
endfunction()
add_gsl_test(span_tests)
add_gsl_test(multi_span_tests)
add_gsl_test(strided_span_tests)
add_gsl_test(string_span_tests)
add_gsl_test(at_tests)
add_gsl_test(bounds_tests)
add_gsl_test(notnull_tests)
add_gsl_test(assertion_tests)
add_gsl_test(utils_tests)
add_gsl_test(owner_tests)
add_gsl_test(byte_tests)
add_gsl_test(algorithm_tests)

View File

@ -0,0 +1,204 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#include <catch/catch.hpp>
#include <gsl/gsl_algorithm>
#include <array>
using namespace std;
using namespace gsl;
TEST_CASE("same_type")
{
// dynamic source and destination span
{
std::array<int, 5> src{1, 2, 3, 4, 5};
std::array<int, 10> dst{};
span<int> src_span(src);
span<int> dst_span(dst);
copy(src_span, dst_span);
copy(src_span, dst_span.subspan(src_span.size()));
for (std::size_t i = 0; i < src.size(); ++i) {
CHECK(dst[i] == src[i]);
CHECK(dst[i + src.size()] == src[i]);
}
}
// static source and dynamic destination span
{
std::array<int, 5> src{1, 2, 3, 4, 5};
std::array<int, 10> dst{};
span<int, 5> src_span(src);
span<int> dst_span(dst);
copy(src_span, dst_span);
copy(src_span, dst_span.subspan(src_span.size()));
for (std::size_t i = 0; i < src.size(); ++i) {
CHECK(dst[i] == src[i]);
CHECK(dst[i + src.size()] == src[i]);
}
}
// dynamic source and static destination span
{
std::array<int, 5> src{1, 2, 3, 4, 5};
std::array<int, 10> dst{};
span<int> src_span(src);
span<int, 10> dst_span(dst);
copy(src_span, dst_span);
copy(src_span, dst_span.subspan(src_span.size()));
for (std::size_t i = 0; i < src.size(); ++i) {
CHECK(dst[i] == src[i]);
CHECK(dst[i + src.size()] == src[i]);
}
}
// static source and destination span
{
std::array<int, 5> src{1, 2, 3, 4, 5};
std::array<int, 10> dst{};
span<int, 5> src_span(src);
span<int, 10> dst_span(dst);
copy(src_span, dst_span);
copy(src_span, dst_span.subspan(src_span.size()));
for (std::size_t i = 0; i < src.size(); ++i) {
CHECK(dst[i] == src[i]);
CHECK(dst[i + src.size()] == src[i]);
}
}
}
TEST_CASE("compatible_type")
{
// dynamic source and destination span
{
std::array<short, 5> src{1, 2, 3, 4, 5};
std::array<int, 10> dst{};
span<short> src_span(src);
span<int> dst_span(dst);
copy(src_span, dst_span);
copy(src_span, dst_span.subspan(src_span.size()));
for (std::size_t i = 0; i < src.size(); ++i) {
CHECK(dst[i] == src[i]);
CHECK(dst[i + src.size()] == src[i]);
}
}
// static source and dynamic destination span
{
std::array<short, 5> src{1, 2, 3, 4, 5};
std::array<int, 10> dst{};
span<short, 5> src_span(src);
span<int> dst_span(dst);
copy(src_span, dst_span);
copy(src_span, dst_span.subspan(src_span.size()));
for (std::size_t i = 0; i < src.size(); ++i) {
CHECK(dst[i] == src[i]);
CHECK(dst[i + src.size()] == src[i]);
}
}
// dynamic source and static destination span
{
std::array<short, 5> src{1, 2, 3, 4, 5};
std::array<int, 10> dst{};
span<short> src_span(src);
span<int, 10> dst_span(dst);
copy(src_span, dst_span);
copy(src_span, dst_span.subspan(src_span.size()));
for (std::size_t i = 0; i < src.size(); ++i) {
CHECK(dst[i] == src[i]);
CHECK(dst[i + src.size()] == src[i]);
}
}
// static source and destination span
{
std::array<short, 5> src{1, 2, 3, 4, 5};
std::array<int, 10> dst{};
span<short, 5> src_span(src);
span<int, 10> dst_span(dst);
copy(src_span, dst_span);
copy(src_span, dst_span.subspan(src_span.size()));
for (std::size_t i = 0; i < src.size(); ++i) {
CHECK(dst[i] == src[i]);
CHECK(dst[i + src.size()] == src[i]);
}
}
}
#ifdef CONFIRM_COMPILATION_ERRORS
TEST_CASE("incompatible_type")
{
std::array<int, 4> src{1, 2, 3, 4};
std::array<int*, 12> dst{};
span<int> src_span_dyn(src);
span<int, 4> src_span_static(src);
span<int*> dst_span_dyn(dst);
span<int*, 4> dst_span_static(dst);
// every line should produce a compilation error
copy(src_span_dyn, dst_span_dyn);
copy(src_span_dyn, dst_span_static);
copy(src_span_static, dst_span_dyn);
copy(src_span_static, dst_span_static);
}
#endif
TEST_CASE("small_destination_span")
{
std::array<int, 12> src{1, 2, 3, 4};
std::array<int, 4> dst{};
span<int> src_span_dyn(src);
span<int, 12> src_span_static(src);
span<int> dst_span_dyn(dst);
span<int, 4> dst_span_static(dst);
CHECK_THROWS_AS(copy(src_span_dyn, dst_span_dyn), fail_fast);
CHECK_THROWS_AS(copy(src_span_dyn, dst_span_static), fail_fast);
CHECK_THROWS_AS(copy(src_span_static, dst_span_dyn), fail_fast);
#ifdef CONFIRM_COMPILATION_ERRORS
copy(src_span_static, dst_span_static);
#endif
}

View File

@ -0,0 +1,46 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#include <catch/catch.hpp>
#include <gsl/gsl>
using namespace gsl;
int f(int i)
{
Expects(i > 0 && i < 10);
return i;
}
TEST_CASE("expects")
{
CHECK(f(2) == 2);
CHECK_THROWS_AS(f(10), fail_fast);
}
int g(int i)
{
i++;
Ensures(i > 0 && i < 10);
return i;
}
TEST_CASE("ensures")
{
CHECK(g(2) == 3);
CHECK_THROWS_AS(g(9), fail_fast);
}

View File

@ -0,0 +1,110 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#include <catch/catch.hpp>
#include <gsl/gsl>
#include <initializer_list>
#include <vector>
using gsl::fail_fast;
TEST_CASE("static_array")
{
int a[4] = {1, 2, 3, 4};
const int(&c_a)[4] = a;
for (int i = 0; i < 4; ++i) {
CHECK(&gsl::at(a, i) == &a[i]);
CHECK(&gsl::at(c_a, i) == &a[i]);
}
CHECK_THROWS_AS(gsl::at(a, -1), fail_fast);
CHECK_THROWS_AS(gsl::at(a, 4), fail_fast);
CHECK_THROWS_AS(gsl::at(c_a, -1), fail_fast);
CHECK_THROWS_AS(gsl::at(c_a, 4), fail_fast);
}
TEST_CASE("std_array")
{
std::array<int, 4> a = {1, 2, 3, 4};
const std::array<int, 4>& c_a = a;
for (int i = 0; i < 4; ++i) {
CHECK(&gsl::at(a, i) == &a[static_cast<std::size_t>(i)]);
CHECK(&gsl::at(c_a, i) == &a[static_cast<std::size_t>(i)]);
}
CHECK_THROWS_AS(gsl::at(a, -1), fail_fast);
CHECK_THROWS_AS(gsl::at(a, 4), fail_fast);
CHECK_THROWS_AS(gsl::at(c_a, -1), fail_fast);
CHECK_THROWS_AS(gsl::at(c_a, 4), fail_fast);
}
TEST_CASE("StdVector")
{
std::vector<int> a = {1, 2, 3, 4};
const std::vector<int>& c_a = a;
for (int i = 0; i < 4; ++i) {
CHECK(&gsl::at(a, i) == &a[static_cast<std::size_t>(i)]);
CHECK(&gsl::at(c_a, i) == &a[static_cast<std::size_t>(i)]);
}
CHECK_THROWS_AS(gsl::at(a, -1), fail_fast);
CHECK_THROWS_AS(gsl::at(a, 4), fail_fast);
CHECK_THROWS_AS(gsl::at(c_a, -1), fail_fast);
CHECK_THROWS_AS(gsl::at(c_a, 4), fail_fast);
}
TEST_CASE("InitializerList")
{
std::initializer_list<int> a = {1, 2, 3, 4};
for (int i = 0; i < 4; ++i) {
CHECK(gsl::at(a, i) == i + 1);
CHECK(gsl::at({1, 2, 3, 4}, i) == i + 1);
}
CHECK_THROWS_AS(gsl::at(a, -1), fail_fast);
CHECK_THROWS_AS(gsl::at(a, 4), fail_fast);
CHECK_THROWS_AS(gsl::at({1, 2, 3, 4}, -1), fail_fast);
CHECK_THROWS_AS(gsl::at({1, 2, 3, 4}, 4), fail_fast);
}
#if !defined(_MSC_VER) || defined(__clang__) || _MSC_VER >= 1910
static constexpr bool test_constexpr()
{
int a1[4] = {1, 2, 3, 4};
const int(&c_a1)[4] = a1;
std::array<int, 4> a2 = {1, 2, 3, 4};
const std::array<int, 4>& c_a2 = a2;
for (int i = 0; i < 4; ++i) {
if (&gsl::at(a1, i) != &a1[i]) return false;
if (&gsl::at(c_a1, i) != &a1[i]) return false;
// requires C++17:
// if (&gsl::at(a2, i) != &a2[static_cast<std::size_t>(i)]) return false;
if (&gsl::at(c_a2, i) != &c_a2[static_cast<std::size_t>(i)]) return false;
if (gsl::at({1, 2, 3, 4}, i) != i + 1) return false;
}
return true;
}
static_assert(test_constexpr(), "FAIL");
#endif

View File

@ -0,0 +1,95 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#include <catch/catch.hpp>
#include <gsl/multi_span>
#include <vector>
using namespace std;
using namespace gsl;
namespace
{
void use(std::ptrdiff_t&) {}
}
TEST_CASE("basic_bounds")
{
for (auto point : static_bounds<dynamic_range, 3, 4>{2}) {
for (decltype(point)::size_type j = 0;
j < static_cast<decltype(point)::size_type>(decltype(point)::rank); j++)
{
use(j);
use(point[static_cast<std::size_t>(j)]);
}
}
}
TEST_CASE("bounds_basic")
{
static_bounds<3, 4, 5> b;
const auto a = b.slice();
(void) a;
static_bounds<4, dynamic_range, 2> x{4};
x.slice().slice();
}
TEST_CASE("arrayview_iterator")
{
static_bounds<4, dynamic_range, 2> bounds{3};
const auto itr = bounds.begin();
(void) itr;
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 4, dynamic_range, 2> av(nullptr, bounds);
auto itr2 = av.cbegin();
for (auto& v : av) {
v = 4;
}
fill(av.begin(), av.end(), 0);
#endif
}
TEST_CASE("bounds_convertible")
{
static_bounds<7, 4, 2> b1;
static_bounds<7, dynamic_range, 2> b2 = b1;
(void) b2;
#ifdef CONFIRM_COMPILATION_ERRORS
static_bounds<7, dynamic_range, 1> b4 = b2;
#endif
static_bounds<dynamic_range, dynamic_range, dynamic_range> b3 = b1;
static_bounds<7, 4, 2> b4 = b3;
(void) b4;
static_bounds<dynamic_range> b11;
static_bounds<dynamic_range> b5;
static_bounds<34> b6;
b5 = static_bounds<20>();
CHECK_THROWS_AS(b6 = b5, fail_fast);
b5 = static_bounds<34>();
b6 = b5;
CHECK(b5 == b6);
CHECK(b5.size() == b6.size());
}

View File

@ -0,0 +1,131 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#include <catch/catch.hpp>
#include <gsl/gsl_byte>
#include <iostream>
#include <list>
#include <map>
#include <memory>
#include <string>
#include <vector>
using namespace std;
using namespace gsl;
namespace
{
TEST_CASE("construction")
{
{
const byte b = static_cast<byte>(4);
CHECK(static_cast<unsigned char>(b) == 4);
}
{
const byte b = byte(12);
CHECK(static_cast<unsigned char>(b) == 12);
}
{
const byte b = to_byte<12>();
CHECK(static_cast<unsigned char>(b) == 12);
}
{
const unsigned char uc = 12;
const byte b = to_byte(uc);
CHECK(static_cast<unsigned char>(b) == 12);
}
// waiting for C++17 enum class direct initializer support
//{
// byte b { 14 };
// CHECK(static_cast<unsigned char>(b) == 14);
//}
}
TEST_CASE("bitwise_operations")
{
const byte b = to_byte<0xFF>();
byte a = to_byte<0x00>();
CHECK((b | a) == to_byte<0xFF>());
CHECK(a == to_byte<0x00>());
a |= b;
CHECK(a == to_byte<0xFF>());
a = to_byte<0x01>();
CHECK((b & a) == to_byte<0x01>());
a &= b;
CHECK(a == to_byte<0x01>());
CHECK((b ^ a) == to_byte<0xFE>());
CHECK(a == to_byte<0x01>());
a ^= b;
CHECK(a == to_byte<0xFE>());
a = to_byte<0x01>();
CHECK(~a == to_byte<0xFE>());
a = to_byte<0xFF>();
CHECK((a << 4) == to_byte<0xF0>());
CHECK((a >> 4) == to_byte<0x0F>());
a <<= 4;
CHECK(a == to_byte<0xF0>());
a >>= 4;
CHECK(a == to_byte<0x0F>());
}
TEST_CASE("to_integer")
{
const byte b = to_byte<0x12>();
CHECK(0x12 == gsl::to_integer<char>(b));
CHECK(0x12 == gsl::to_integer<short>(b));
CHECK(0x12 == gsl::to_integer<long>(b));
CHECK(0x12 == gsl::to_integer<long long>(b));
CHECK(0x12 == gsl::to_integer<unsigned char>(b));
CHECK(0x12 == gsl::to_integer<unsigned short>(b));
CHECK(0x12 == gsl::to_integer<unsigned long>(b));
CHECK(0x12 == gsl::to_integer<unsigned long long>(b));
// CHECK(0x12 == gsl::to_integer<float>(b)); // expect compile-time error
// CHECK(0x12 == gsl::to_integer<double>(b)); // expect compile-time error
}
int modify_both(gsl::byte & b, int& i)
{
i = 10;
b = to_byte<5>();
return i;
}
TEST_CASE("aliasing")
{
int i{0};
const int res = modify_both(reinterpret_cast<byte&>(i), i);
CHECK(res == i);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,317 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#include <catch/catch.hpp>
#include <gsl/pointers>
#include <memory>
#include <string>
#include <vector>
using namespace gsl;
struct MyBase
{
};
struct MyDerived : public MyBase
{
};
struct Unrelated
{
};
// stand-in for a user-defined ref-counted class
template <typename T>
struct RefCounted
{
RefCounted(T* p) : p_(p) {}
operator T*() { return p_; }
T* p_;
};
// user defined smart pointer with comparison operators returning non bool value
template <typename T>
struct CustomPtr
{
CustomPtr(T* p) : p_(p) {}
operator T*() { return p_; }
bool operator!=(std::nullptr_t) const { return p_ != nullptr; }
T* p_ = nullptr;
};
template <typename T, typename U>
std::string operator==(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
return reinterpret_cast<const void*>(lhs.p_) == reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
template <typename T, typename U>
std::string operator!=(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
return reinterpret_cast<const void*>(lhs.p_) != reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
template <typename T, typename U>
std::string operator<(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
return reinterpret_cast<const void*>(lhs.p_) < reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
template <typename T, typename U>
std::string operator>(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
return reinterpret_cast<const void*>(lhs.p_) > reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
template <typename T, typename U>
std::string operator<=(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
return reinterpret_cast<const void*>(lhs.p_) <= reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
template <typename T, typename U>
std::string operator>=(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
return reinterpret_cast<const void*>(lhs.p_) >= reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
struct NonCopyableNonMovable
{
NonCopyableNonMovable() = default;
NonCopyableNonMovable(const NonCopyableNonMovable&) = delete;
NonCopyableNonMovable& operator=(const NonCopyableNonMovable&) = delete;
NonCopyableNonMovable(NonCopyableNonMovable&&) = delete;
NonCopyableNonMovable& operator=(NonCopyableNonMovable&&) = delete;
};
bool helper(not_null<int*> p) { return *p == 12; }
TEST_CASE("TestNotNullConstructors")
{
#ifdef CONFIRM_COMPILATION_ERRORS
not_null<int*> p = nullptr; // yay...does not compile!
not_null<std::vector<char>*> p = 0; // yay...does not compile!
not_null<int*> p; // yay...does not compile!
std::unique_ptr<int> up = std::make_unique<int>(120);
not_null<int*> p = up;
// Forbid non-nullptr assignable types
not_null<std::vector<int>> f(std::vector<int>{1});
not_null<int> z(10);
not_null<std::vector<int>> y({1, 2});
#endif
int i = 12;
auto rp = RefCounted<int>(&i);
not_null<int*> p(rp);
CHECK(p.get() == &i);
not_null<std::shared_ptr<int>> x(
std::make_shared<int>(10)); // shared_ptr<int> is nullptr assignable
}
template<typename T>
void ostream_helper(T v)
{
not_null<T*> p(&v);
{
std::ostringstream os;
std::ostringstream ref;
os << p;
ref << &v;
CHECK(os.str() == ref.str());
}
{
std::ostringstream os;
std::ostringstream ref;
os << *p;
ref << v;
CHECK(os.str() == ref.str());
}
}
TEST_CASE("TestNotNullostream")
{
ostream_helper<int>(17);
ostream_helper<float>(21.5f);
ostream_helper<double>(3.4566e-7f);
ostream_helper<char>('c');
ostream_helper<uint16_t>(0x0123u);
ostream_helper<const char*>("cstring");
ostream_helper<std::string>("string");
}
TEST_CASE("TestNotNullCasting")
{
MyBase base;
MyDerived derived;
Unrelated unrelated;
not_null<Unrelated*> u = &unrelated;
(void) u;
not_null<MyDerived*> p = &derived;
not_null<MyBase*> q = &base;
q = p; // allowed with heterogeneous copy ctor
CHECK(q == p);
#ifdef CONFIRM_COMPILATION_ERRORS
q = u; // no viable conversion possible between MyBase* and Unrelated*
p = q; // not possible to implicitly convert MyBase* to MyDerived*
not_null<Unrelated*> r = p;
not_null<Unrelated*> s = reinterpret_cast<Unrelated*>(p);
#endif
not_null<Unrelated*> t = reinterpret_cast<Unrelated*>(p.get());
CHECK(reinterpret_cast<void*>(p.get()) == reinterpret_cast<void*>(t.get()));
}
TEST_CASE("TestNotNullAssignment")
{
int i = 12;
not_null<int*> p = &i;
CHECK(helper(p));
int* q = nullptr;
CHECK_THROWS_AS(p = q, fail_fast);
}
TEST_CASE("TestNotNullRawPointerComparison")
{
int ints[2] = {42, 43};
int* p1 = &ints[0];
const int* p2 = &ints[1];
using NotNull1 = not_null<decltype(p1)>;
using NotNull2 = not_null<decltype(p2)>;
CHECK((NotNull1(p1) == NotNull1(p1)) == true);
CHECK((NotNull1(p1) == NotNull2(p2)) == false);
CHECK((NotNull1(p1) != NotNull1(p1)) == false);
CHECK((NotNull1(p1) != NotNull2(p2)) == true);
CHECK((NotNull1(p1) < NotNull1(p1)) == false);
CHECK((NotNull1(p1) < NotNull2(p2)) == (p1 < p2));
CHECK((NotNull2(p2) < NotNull1(p1)) == (p2 < p1));
CHECK((NotNull1(p1) > NotNull1(p1)) == false);
CHECK((NotNull1(p1) > NotNull2(p2)) == (p1 > p2));
CHECK((NotNull2(p2) > NotNull1(p1)) == (p2 > p1));
CHECK((NotNull1(p1) <= NotNull1(p1)) == true);
CHECK((NotNull1(p1) <= NotNull2(p2)) == (p1 <= p2));
CHECK((NotNull2(p2) <= NotNull1(p1)) == (p2 <= p1));
}
TEST_CASE("TestNotNullDereferenceOperator")
{
{
auto sp1 = std::make_shared<NonCopyableNonMovable>();
using NotNullSp1 = not_null<decltype(sp1)>;
CHECK(typeid(*sp1) == typeid(*NotNullSp1(sp1)));
CHECK(std::addressof(*NotNullSp1(sp1)) == std::addressof(*sp1));
}
{
int ints[1] = { 42 };
CustomPtr<int> p1(&ints[0]);
using NotNull1 = not_null<decltype(p1)>;
CHECK(typeid(*NotNull1(p1)) == typeid(*p1));
CHECK(*NotNull1(p1) == 42);
*NotNull1(p1) = 43;
CHECK(ints[0] == 43);
}
{
int v = 42;
gsl::not_null<int*> p(&v);
CHECK(typeid(*p) == typeid(*(&v)));
*p = 43;
CHECK(v == 43);
}
}
TEST_CASE("TestNotNullSharedPtrComparison")
{
auto sp1 = std::make_shared<int>(42);
auto sp2 = std::make_shared<const int>(43);
using NotNullSp1 = not_null<decltype(sp1)>;
using NotNullSp2 = not_null<decltype(sp2)>;
CHECK((NotNullSp1(sp1) == NotNullSp1(sp1)) == true);
CHECK((NotNullSp1(sp1) == NotNullSp2(sp2)) == false);
CHECK((NotNullSp1(sp1) != NotNullSp1(sp1)) == false);
CHECK((NotNullSp1(sp1) != NotNullSp2(sp2)) == true);
CHECK((NotNullSp1(sp1) < NotNullSp1(sp1)) == false);
CHECK((NotNullSp1(sp1) < NotNullSp2(sp2)) == (sp1 < sp2));
CHECK((NotNullSp2(sp2) < NotNullSp1(sp1)) == (sp2 < sp1));
CHECK((NotNullSp1(sp1) > NotNullSp1(sp1)) == false);
CHECK((NotNullSp1(sp1) > NotNullSp2(sp2)) == (sp1 > sp2));
CHECK((NotNullSp2(sp2) > NotNullSp1(sp1)) == (sp2 > sp1));
CHECK((NotNullSp1(sp1) <= NotNullSp1(sp1)) == true);
CHECK((NotNullSp1(sp1) <= NotNullSp2(sp2)) == (sp1 <= sp2));
CHECK((NotNullSp2(sp2) <= NotNullSp1(sp1)) == (sp2 <= sp1));
CHECK((NotNullSp1(sp1) >= NotNullSp1(sp1)) == true);
CHECK((NotNullSp1(sp1) >= NotNullSp2(sp2)) == (sp1 >= sp2));
CHECK((NotNullSp2(sp2) >= NotNullSp1(sp1)) == (sp2 >= sp1));
}
TEST_CASE("TestNotNullCustomPtrComparison")
{
int ints[2] = {42, 43};
CustomPtr<int> p1(&ints[0]);
CustomPtr<const int> p2(&ints[1]);
using NotNull1 = not_null<decltype(p1)>;
using NotNull2 = not_null<decltype(p2)>;
CHECK((NotNull1(p1) == NotNull1(p1)) == "true");
CHECK((NotNull1(p1) == NotNull2(p2)) == "false");
CHECK((NotNull1(p1) != NotNull1(p1)) == "false");
CHECK((NotNull1(p1) != NotNull2(p2)) == "true");
CHECK((NotNull1(p1) < NotNull1(p1)) == "false");
CHECK((NotNull1(p1) < NotNull2(p2)) == (p1 < p2));
CHECK((NotNull2(p2) < NotNull1(p1)) == (p2 < p1));
CHECK((NotNull1(p1) > NotNull1(p1)) == "false");
CHECK((NotNull1(p1) > NotNull2(p2)) == (p1 > p2));
CHECK((NotNull2(p2) > NotNull1(p1)) == (p2 > p1));
CHECK((NotNull1(p1) <= NotNull1(p1)) == "true");
CHECK((NotNull1(p1) <= NotNull2(p2)) == (p1 <= p2));
CHECK((NotNull2(p2) <= NotNull1(p1)) == (p2 <= p1));
CHECK((NotNull1(p1) >= NotNull1(p1)) == "true");
CHECK((NotNull1(p1) >= NotNull2(p2)) == (p1 >= p2));
CHECK((NotNull2(p2) >= NotNull1(p1)) == (p2 >= p1));
}

View File

@ -0,0 +1,45 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#include <catch/catch.hpp>
#include <gsl/pointers>
#include <functional>
#include <memory>
using namespace gsl;
void f(int* i) { *i += 1; }
TEST_CASE("basic_test")
{
owner<int*> p = new int(120);
CHECK(*p == 120);
f(p);
CHECK(*p == 121);
delete p;
}
TEST_CASE("check_pointer_constraint")
{
#ifdef CONFIRM_COMPILATION_ERRORS
{
owner<int> integerTest = 10;
owner<std::shared_ptr<int>> sharedPtrTest(new int(10));
}
#endif
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,752 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#include <catch/catch.hpp>
#include <gsl/multi_span>
#include <iostream>
#include <list>
#include <map>
#include <memory>
#include <string>
#include <vector>
using namespace std;
using namespace gsl;
namespace
{
struct BaseClass
{
};
struct DerivedClass : BaseClass
{
};
}
TEST_CASE("span_section_test")
{
int a[30][4][5];
const auto av = as_multi_span(a);
const auto sub = av.section({15, 0, 0}, gsl::index<3>{2, 2, 2});
const auto subsub = sub.section({1, 0, 0}, gsl::index<3>{1, 1, 1});
(void) subsub;
}
TEST_CASE("span_section")
{
std::vector<int> data(5 * 10);
std::iota(begin(data), end(data), 0);
const multi_span<int, 5, 10> av = as_multi_span(multi_span<int>{data}, dim<5>(), dim<10>());
const strided_span<int, 2> av_section_1 = av.section({1, 2}, {3, 4});
CHECK((av_section_1[{0, 0}] == 12));
CHECK((av_section_1[{0, 1}] == 13));
CHECK((av_section_1[{1, 0}] == 22));
CHECK((av_section_1[{2, 3}] == 35));
const strided_span<int, 2> av_section_2 = av_section_1.section({1, 2}, {2, 2});
CHECK((av_section_2[{0, 0}] == 24));
CHECK((av_section_2[{0, 1}] == 25));
CHECK((av_section_2[{1, 0}] == 34));
}
TEST_CASE("strided_span_constructors")
{
// Check stride constructor
{
int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
const int carr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
strided_span<int, 1> sav1{arr, {{9}, {1}}}; // T -> T
CHECK(sav1.bounds().index_bounds() == index<1>{9});
CHECK(sav1.bounds().stride() == 1);
CHECK((sav1[0] == 1 && sav1[8] == 9));
strided_span<const int, 1> sav2{carr, {{4}, {2}}}; // const T -> const T
CHECK(sav2.bounds().index_bounds() == index<1>{4});
CHECK(sav2.bounds().strides() == index<1>{2});
CHECK((sav2[0] == 1 && sav2[3] == 7));
strided_span<int, 2> sav3{arr, {{2, 2}, {6, 2}}}; // T -> const T
CHECK((sav3.bounds().index_bounds() == index<2>{2, 2}));
CHECK((sav3.bounds().strides() == index<2>{6, 2}));
CHECK((sav3[{0, 0}] == 1 && sav3[{0, 1}] == 3 && sav3[{1, 0}] == 7));
}
// Check multi_span constructor
{
int arr[] = {1, 2};
// From non-cv-qualified source
{
const multi_span<int> src = arr;
strided_span<int, 1> sav{src, {2, 1}};
CHECK(sav.bounds().index_bounds() == index<1>{2});
CHECK(sav.bounds().strides() == index<1>{1});
CHECK(sav[1] == 2);
#if _MSC_VER > 1800
// strided_span<const int, 1> sav_c{ {src}, {2, 1} };
strided_span<const int, 1> sav_c{multi_span<const int>{src},
strided_bounds<1>{2, 1}};
#else
strided_span<const int, 1> sav_c{multi_span<const int>{src},
strided_bounds<1>{2, 1}};
#endif
CHECK(sav_c.bounds().index_bounds() == index<1>{2});
CHECK(sav_c.bounds().strides() == index<1>{1});
CHECK(sav_c[1] == 2);
#if _MSC_VER > 1800
strided_span<volatile int, 1> sav_v{src, {2, 1}};
#else
strided_span<volatile int, 1> sav_v{multi_span<volatile int>{src},
strided_bounds<1>{2, 1}};
#endif
CHECK(sav_v.bounds().index_bounds() == index<1>{2});
CHECK(sav_v.bounds().strides() == index<1>{1});
CHECK(sav_v[1] == 2);
#if _MSC_VER > 1800
strided_span<const volatile int, 1> sav_cv{src, {2, 1}};
#else
strided_span<const volatile int, 1> sav_cv{multi_span<const volatile int>{src},
strided_bounds<1>{2, 1}};
#endif
CHECK(sav_cv.bounds().index_bounds() == index<1>{2});
CHECK(sav_cv.bounds().strides() == index<1>{1});
CHECK(sav_cv[1] == 2);
}
// From const-qualified source
{
const multi_span<const int> src{arr};
strided_span<const int, 1> sav_c{src, {2, 1}};
CHECK(sav_c.bounds().index_bounds() == index<1>{2});
CHECK(sav_c.bounds().strides() == index<1>{1});
CHECK(sav_c[1] == 2);
#if _MSC_VER > 1800
strided_span<const volatile int, 1> sav_cv{src, {2, 1}};
#else
strided_span<const volatile int, 1> sav_cv{multi_span<const volatile int>{src},
strided_bounds<1>{2, 1}};
#endif
CHECK(sav_cv.bounds().index_bounds() == index<1>{2});
CHECK(sav_cv.bounds().strides() == index<1>{1});
CHECK(sav_cv[1] == 2);
}
// From volatile-qualified source
{
const multi_span<volatile int> src{arr};
strided_span<volatile int, 1> sav_v{src, {2, 1}};
CHECK(sav_v.bounds().index_bounds() == index<1>{2});
CHECK(sav_v.bounds().strides() == index<1>{1});
CHECK(sav_v[1] == 2);
#if _MSC_VER > 1800
strided_span<const volatile int, 1> sav_cv{src, {2, 1}};
#else
strided_span<const volatile int, 1> sav_cv{multi_span<const volatile int>{src},
strided_bounds<1>{2, 1}};
#endif
CHECK(sav_cv.bounds().index_bounds() == index<1>{2});
CHECK(sav_cv.bounds().strides() == index<1>{1});
CHECK(sav_cv[1] == 2);
}
// From cv-qualified source
{
const multi_span<const volatile int> src{arr};
strided_span<const volatile int, 1> sav_cv{src, {2, 1}};
CHECK(sav_cv.bounds().index_bounds() == index<1>{2});
CHECK(sav_cv.bounds().strides() == index<1>{1});
CHECK(sav_cv[1] == 2);
}
}
// Check const-casting constructor
{
int arr[2] = {4, 5};
const multi_span<int, 2> av(arr, 2);
multi_span<const int, 2> av2{av};
CHECK(av2[1] == 5);
static_assert(
std::is_convertible<const multi_span<int, 2>, multi_span<const int, 2>>::value,
"ctor is not implicit!");
const strided_span<int, 1> src{arr, {2, 1}};
strided_span<const int, 1> sav{src};
CHECK(sav.bounds().index_bounds() == index<1>{2});
CHECK(sav.bounds().stride() == 1);
CHECK(sav[1] == 5);
static_assert(
std::is_convertible<const strided_span<int, 1>, strided_span<const int, 1>>::value,
"ctor is not implicit!");
}
// Check copy constructor
{
int arr1[2] = {3, 4};
const strided_span<int, 1> src1{arr1, {2, 1}};
strided_span<int, 1> sav1{src1};
CHECK(sav1.bounds().index_bounds() == index<1>{2});
CHECK(sav1.bounds().stride() == 1);
CHECK(sav1[0] == 3);
int arr2[6] = {1, 2, 3, 4, 5, 6};
const strided_span<const int, 2> src2{arr2, {{3, 2}, {2, 1}}};
strided_span<const int, 2> sav2{src2};
CHECK((sav2.bounds().index_bounds() == index<2>{3, 2}));
CHECK((sav2.bounds().strides() == index<2>{2, 1}));
CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5));
}
// Check const-casting assignment operator
{
int arr1[2] = {1, 2};
int arr2[6] = {3, 4, 5, 6, 7, 8};
const strided_span<int, 1> src{arr1, {{2}, {1}}};
strided_span<const int, 1> sav{arr2, {{3}, {2}}};
strided_span<const int, 1>& sav_ref = (sav = src);
CHECK(sav.bounds().index_bounds() == index<1>{2});
CHECK(sav.bounds().strides() == index<1>{1});
CHECK(sav[0] == 1);
CHECK(&sav_ref == &sav);
}
// Check copy assignment operator
{
int arr1[2] = {3, 4};
int arr1b[1] = {0};
const strided_span<int, 1> src1{arr1, {2, 1}};
strided_span<int, 1> sav1{arr1b, {1, 1}};
strided_span<int, 1>& sav1_ref = (sav1 = src1);
CHECK(sav1.bounds().index_bounds() == index<1>{2});
CHECK(sav1.bounds().strides() == index<1>{1});
CHECK(sav1[0] == 3);
CHECK(&sav1_ref == &sav1);
const int arr2[6] = {1, 2, 3, 4, 5, 6};
const int arr2b[1] = {0};
const strided_span<const int, 2> src2{arr2, {{3, 2}, {2, 1}}};
strided_span<const int, 2> sav2{arr2b, {{1, 1}, {1, 1}}};
strided_span<const int, 2>& sav2_ref = (sav2 = src2);
CHECK((sav2.bounds().index_bounds() == index<2>{3, 2}));
CHECK((sav2.bounds().strides() == index<2>{2, 1}));
CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5));
CHECK(&sav2_ref == &sav2);
}
}
TEST_CASE("strided_span_slice")
{
std::vector<int> data(5 * 10);
std::iota(begin(data), end(data), 0);
const multi_span<int, 5, 10> src =
as_multi_span(multi_span<int>{data}, dim<5>(), dim<10>());
const strided_span<int, 2> sav{src, {{5, 10}, {10, 1}}};
#ifdef CONFIRM_COMPILATION_ERRORS
const strided_span<const int, 2> csav{{src}, {{5, 10}, {10, 1}}};
#endif
const strided_span<const int, 2> csav{multi_span<const int, 5, 10>{src},
{{5, 10}, {10, 1}}};
strided_span<int, 1> sav_sl = sav[2];
CHECK(sav_sl[0] == 20);
CHECK(sav_sl[9] == 29);
strided_span<const int, 1> csav_sl = sav[3];
CHECK(csav_sl[0] == 30);
CHECK(csav_sl[9] == 39);
CHECK(sav[4][0] == 40);
CHECK(sav[4][9] == 49);
}
TEST_CASE("strided_span_column_major")
{
// strided_span may be used to accommodate more peculiar
// use cases, such as column-major multidimensional array
// (aka. "FORTRAN" layout).
int cm_array[3 * 5] = {1, 4, 7, 10, 13, 2, 5, 8, 11, 14, 3, 6, 9, 12, 15};
strided_span<int, 2> cm_sav{cm_array, {{5, 3}, {1, 5}}};
// Accessing elements
CHECK((cm_sav[{0, 0}] == 1));
CHECK((cm_sav[{0, 1}] == 2));
CHECK((cm_sav[{1, 0}] == 4));
CHECK((cm_sav[{4, 2}] == 15));
// Slice
strided_span<int, 1> cm_sl = cm_sav[3];
CHECK(cm_sl[0] == 10);
CHECK(cm_sl[1] == 11);
CHECK(cm_sl[2] == 12);
// Section
strided_span<int, 2> cm_sec = cm_sav.section({2, 1}, {3, 2});
CHECK((cm_sec.bounds().index_bounds() == index<2>{3, 2}));
CHECK((cm_sec[{0, 0}] == 8));
CHECK((cm_sec[{0, 1}] == 9));
CHECK((cm_sec[{1, 0}] == 11));
CHECK((cm_sec[{2, 1}] == 15));
}
TEST_CASE("strided_span_bounds")
{
int arr[] = {0, 1, 2, 3};
multi_span<int> av(arr);
{
// incorrect sections
CHECK_THROWS_AS(av.section(0, 0)[0], fail_fast);
CHECK_THROWS_AS(av.section(1, 0)[0], fail_fast);
CHECK_THROWS_AS(av.section(1, 1)[1], fail_fast);
CHECK_THROWS_AS(av.section(2, 5), fail_fast);
CHECK_THROWS_AS(av.section(5, 2), fail_fast);
CHECK_THROWS_AS(av.section(5, 0), fail_fast);
CHECK_THROWS_AS(av.section(0, 5), fail_fast);
CHECK_THROWS_AS(av.section(5, 5), fail_fast);
}
{
// zero stride
strided_span<int, 1> sav{av, {{4}, {}}};
CHECK(sav[0] == 0);
CHECK(sav[3] == 0);
CHECK_THROWS_AS(sav[4], fail_fast);
}
{
// zero extent
strided_span<int, 1> sav{av, {{}, {1}}};
CHECK_THROWS_AS(sav[0], fail_fast);
}
{
// zero extent and stride
strided_span<int, 1> sav{av, {{}, {}}};
CHECK_THROWS_AS(sav[0], fail_fast);
}
{
// strided array ctor with matching strided bounds
strided_span<int, 1> sav{arr, {4, 1}};
CHECK(sav.bounds().index_bounds() == index<1>{4});
CHECK(sav[3] == 3);
CHECK_THROWS_AS(sav[4], fail_fast);
}
{
// strided array ctor with smaller strided bounds
strided_span<int, 1> sav{arr, {2, 1}};
CHECK(sav.bounds().index_bounds() == index<1>{2});
CHECK(sav[1] == 1);
CHECK_THROWS_AS(sav[2], fail_fast);
}
{
// strided array ctor with fitting irregular bounds
strided_span<int, 1> sav{arr, {2, 3}};
CHECK(sav.bounds().index_bounds() == index<1>{2});
CHECK(sav[0] == 0);
CHECK(sav[1] == 3);
CHECK_THROWS_AS(sav[2], fail_fast);
}
{
// bounds cross data boundaries - from static arrays
CHECK_THROWS_AS((strided_span<int, 1>{arr, {3, 2}}), fail_fast);
CHECK_THROWS_AS((strided_span<int, 1>{arr, {3, 3}}), fail_fast);
CHECK_THROWS_AS((strided_span<int, 1>{arr, {4, 5}}), fail_fast);
CHECK_THROWS_AS((strided_span<int, 1>{arr, {5, 1}}), fail_fast);
CHECK_THROWS_AS((strided_span<int, 1>{arr, {5, 5}}), fail_fast);
}
{
// bounds cross data boundaries - from array view
CHECK_THROWS_AS((strided_span<int, 1>{av, {3, 2}}), fail_fast);
CHECK_THROWS_AS((strided_span<int, 1>{av, {3, 3}}), fail_fast);
CHECK_THROWS_AS((strided_span<int, 1>{av, {4, 5}}), fail_fast);
CHECK_THROWS_AS((strided_span<int, 1>{av, {5, 1}}), fail_fast);
CHECK_THROWS_AS((strided_span<int, 1>{av, {5, 5}}), fail_fast);
}
{
// bounds cross data boundaries - from dynamic arrays
CHECK_THROWS_AS((strided_span<int, 1>{av.data(), 4, {3, 2}}), fail_fast);
CHECK_THROWS_AS((strided_span<int, 1>{av.data(), 4, {3, 3}}), fail_fast);
CHECK_THROWS_AS((strided_span<int, 1>{av.data(), 4, {4, 5}}), fail_fast);
CHECK_THROWS_AS((strided_span<int, 1>{av.data(), 4, {5, 1}}), fail_fast);
CHECK_THROWS_AS((strided_span<int, 1>{av.data(), 4, {5, 5}}), fail_fast);
CHECK_THROWS_AS((strided_span<int, 1>{av.data(), 2, {2, 2}}), fail_fast);
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
strided_span<int, 1> sav0{av.data(), {3, 2}};
strided_span<int, 1> sav1{arr, {1}};
strided_span<int, 1> sav2{arr, {1, 1, 1}};
strided_span<int, 1> sav3{av, {1}};
strided_span<int, 1> sav4{av, {1, 1, 1}};
strided_span<int, 2> sav5{av.as_multi_span(dim<2>(), dim<2>()), {1}};
strided_span<int, 2> sav6{av.as_multi_span(dim<2>(), dim<2>()), {1, 1, 1}};
strided_span<int, 2> sav7{av.as_multi_span(dim<2>(), dim<2>()),
{{1, 1}, {1, 1}, {1, 1}}};
index<1> index{0, 1};
strided_span<int, 1> sav8{arr, {1, {1, 1}}};
strided_span<int, 1> sav9{arr, {{1, 1}, {1, 1}}};
strided_span<int, 1> sav10{av, {1, {1, 1}}};
strided_span<int, 1> sav11{av, {{1, 1}, {1, 1}}};
strided_span<int, 2> sav12{av.as_multi_span(dim<2>(), dim<2>()), {{1}, {1}}};
strided_span<int, 2> sav13{av.as_multi_span(dim<2>(), dim<2>()), {{1}, {1, 1, 1}}};
strided_span<int, 2> sav14{av.as_multi_span(dim<2>(), dim<2>()), {{1, 1, 1}, {1}}};
}
#endif
}
TEST_CASE("strided_span_type_conversion")
{
int arr[] = {0, 1, 2, 3};
multi_span<int> av(arr);
{
strided_span<int, 1> sav{av.data(), av.size(), {av.size() / 2, 2}};
#ifdef CONFIRM_COMPILATION_ERRORS
strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>();
#endif
}
{
strided_span<int, 1> sav{av, {av.size() / 2, 2}};
#ifdef CONFIRM_COMPILATION_ERRORS
strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>();
#endif
}
multi_span<const byte, dynamic_range> bytes = as_bytes(av);
// retype strided array with regular strides - from raw data
{
strided_bounds<2> bounds{{2, bytes.size() / 4}, {bytes.size() / 2, 1}};
strided_span<const byte, 2> sav2{bytes.data(), bytes.size(), bounds};
strided_span<const int, 2> sav3 = sav2.as_strided_span<const int>();
CHECK(sav3[0][0] == 0);
CHECK(sav3[1][0] == 2);
CHECK_THROWS_AS(sav3[1][1], fail_fast);
CHECK_THROWS_AS(sav3[0][1], fail_fast);
}
// retype strided array with regular strides - from multi_span
{
strided_bounds<2> bounds{{2, bytes.size() / 4}, {bytes.size() / 2, 1}};
multi_span<const byte, 2, dynamic_range> bytes2 =
as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
strided_span<const byte, 2> sav2{bytes2, bounds};
strided_span<int, 2> sav3 = sav2.as_strided_span<int>();
CHECK(sav3[0][0] == 0);
CHECK(sav3[1][0] == 2);
CHECK_THROWS_AS(sav3[1][1], fail_fast);
CHECK_THROWS_AS(sav3[0][1], fail_fast);
}
// retype strided array with not enough elements - last dimension of the array is too small
{
strided_bounds<2> bounds{{4, 2}, {4, 1}};
multi_span<const byte, 2, dynamic_range> bytes2 =
as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
strided_span<const byte, 2> sav2{bytes2, bounds};
CHECK_THROWS_AS(sav2.as_strided_span<int>(), fail_fast);
}
// retype strided array with not enough elements - strides are too small
{
strided_bounds<2> bounds{{4, 2}, {2, 1}};
multi_span<const byte, 2, dynamic_range> bytes2 =
as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
strided_span<const byte, 2> sav2{bytes2, bounds};
CHECK_THROWS_AS(sav2.as_strided_span<int>(), fail_fast);
}
// retype strided array with not enough elements - last dimension does not divide by the new
// typesize
{
strided_bounds<2> bounds{{2, 6}, {4, 1}};
multi_span<const byte, 2, dynamic_range> bytes2 =
as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
strided_span<const byte, 2> sav2{bytes2, bounds};
CHECK_THROWS_AS(sav2.as_strided_span<int>(), fail_fast);
}
// retype strided array with not enough elements - strides does not divide by the new
// typesize
{
strided_bounds<2> bounds{{2, 1}, {6, 1}};
multi_span<const byte, 2, dynamic_range> bytes2 =
as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
strided_span<const byte, 2> sav2{bytes2, bounds};
CHECK_THROWS_AS(sav2.as_strided_span<int>(), fail_fast);
}
// retype strided array with irregular strides - from raw data
{
strided_bounds<1> bounds{bytes.size() / 2, 2};
strided_span<const byte, 1> sav2{bytes.data(), bytes.size(), bounds};
CHECK_THROWS_AS(sav2.as_strided_span<int>(), fail_fast);
}
// retype strided array with irregular strides - from multi_span
{
strided_bounds<1> bounds{bytes.size() / 2, 2};
strided_span<const byte, 1> sav2{bytes, bounds};
CHECK_THROWS_AS(sav2.as_strided_span<int>(), fail_fast);
}
}
TEST_CASE("empty_strided_spans")
{
{
multi_span<int, 0> empty_av(nullptr);
strided_span<int, 1> empty_sav{empty_av, {0, 1}};
CHECK(empty_sav.bounds().index_bounds() == index<1>{0});
CHECK_THROWS_AS(empty_sav[0], fail_fast);
CHECK_THROWS_AS(empty_sav.begin()[0], fail_fast);
CHECK_THROWS_AS(empty_sav.cbegin()[0], fail_fast);
for (const auto& v : empty_sav) {
(void) v;
CHECK(false);
}
}
{
strided_span<int, 1> empty_sav{nullptr, 0, {0, 1}};
CHECK(empty_sav.bounds().index_bounds() == index<1>{0});
CHECK_THROWS_AS(empty_sav[0], fail_fast);
CHECK_THROWS_AS(empty_sav.begin()[0], fail_fast);
CHECK_THROWS_AS(empty_sav.cbegin()[0], fail_fast);
for (const auto& v : empty_sav) {
(void) v;
CHECK(false);
}
}
}
void iterate_every_other_element(multi_span<int, dynamic_range> av)
{
// pick every other element
auto length = av.size() / 2;
#if _MSC_VER > 1800
auto bounds = strided_bounds<1>({length}, {2});
#else
auto bounds = strided_bounds<1>(index<1>{length}, index<1>{2});
#endif
strided_span<int, 1> strided(&av.data()[1], av.size() - 1, bounds);
CHECK(strided.size() == length);
CHECK(strided.bounds().index_bounds()[0] == length);
for (auto i = 0; i < strided.size(); ++i) {
CHECK(strided[i] == av[2 * i + 1]);
}
int idx = 0;
for (auto num : strided) {
CHECK(num == av[2 * idx + 1]);
idx++;
}
}
TEST_CASE("strided_span_section_iteration")
{
int arr[8] = {4, 0, 5, 1, 6, 2, 7, 3};
// static bounds
{
multi_span<int, 8> av(arr, 8);
iterate_every_other_element(av);
}
// dynamic bounds
{
multi_span<int, dynamic_range> av(arr, 8);
iterate_every_other_element(av);
}
}
TEST_CASE("dynamic_strided_span_section_iteration")
{
auto arr = new int[8];
for (int i = 0; i < 4; ++i) {
arr[2 * i] = 4 + i;
arr[2 * i + 1] = i;
}
auto av = as_multi_span(arr, 8);
iterate_every_other_element(av);
delete[] arr;
}
void iterate_second_slice(multi_span<int, dynamic_range, dynamic_range, dynamic_range> av)
{
const int expected[6] = {2, 3, 10, 11, 18, 19};
auto section = av.section({0, 1, 0}, {3, 1, 2});
for (auto i = 0; i < section.extent<0>(); ++i) {
for (auto j = 0; j < section.extent<1>(); ++j)
for (auto k = 0; k < section.extent<2>(); ++k) {
auto idx = index<3>{i, j, k}; // avoid braces in the CHECK macro
CHECK(section[idx] == expected[2 * i + 2 * j + k]);
}
}
for (auto i = 0; i < section.extent<0>(); ++i) {
for (auto j = 0; j < section.extent<1>(); ++j)
for (auto k = 0; k < section.extent<2>(); ++k)
CHECK(section[i][j][k] == expected[2 * i + 2 * j + k]);
}
int i = 0;
for (const auto num : section) {
CHECK(num == expected[i]);
i++;
}
}
TEST_CASE("strided_span_section_iteration_3d")
{
int arr[3][4][2]{};
for (auto i = 0; i < 3; ++i) {
for (auto j = 0; j < 4; ++j)
for (auto k = 0; k < 2; ++k) arr[i][j][k] = 8 * i + 2 * j + k;
}
{
multi_span<int, 3, 4, 2> av = arr;
iterate_second_slice(av);
}
}
TEST_CASE("dynamic_strided_span_section_iteration_3d")
{
const auto height = 12, width = 2;
const auto size = height * width;
auto arr = new int[static_cast<std::size_t>(size)];
for (auto i = 0; i < size; ++i) {
arr[i] = i;
}
{
auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim<4>(), dim<2>());
iterate_second_slice(av);
}
{
auto av = as_multi_span(as_multi_span(arr, 24), dim(3), dim<4>(), dim<2>());
iterate_second_slice(av);
}
{
auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim(4), dim<2>());
iterate_second_slice(av);
}
{
auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim<4>(), dim(2));
iterate_second_slice(av);
}
delete[] arr;
}
TEST_CASE("strided_span_conversion")
{
// get an multi_span of 'c' values from the list of X's
struct X
{
int a;
int b;
int c;
};
X arr[4] = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}};
int s = sizeof(int) / sizeof(byte);
auto d2 = 3 * s;
auto d1 = narrow_cast<int>(sizeof(int)) * 12 / d2;
// convert to 4x12 array of bytes
auto av = as_multi_span(as_bytes(as_multi_span(arr, 4)), dim(d1), dim(d2));
CHECK(av.bounds().index_bounds()[0] == 4);
CHECK(av.bounds().index_bounds()[1] == 12);
// get the last 4 columns
auto section = av.section({0, 2 * s}, {4, s}); // { { arr[0].c[0], arr[0].c[1], arr[0].c[2],
// arr[0].c[3] } , { arr[1].c[0], ... } , ...
// }
// convert to array 4x1 array of integers
auto cs = section.as_strided_span<int>(); // { { arr[0].c }, {arr[1].c } , ... }
CHECK(cs.bounds().index_bounds()[0] == 4);
CHECK(cs.bounds().index_bounds()[1] == 1);
// transpose to 1x4 array
strided_bounds<2> reverse_bounds{
{cs.bounds().index_bounds()[1], cs.bounds().index_bounds()[0]},
{cs.bounds().strides()[1], cs.bounds().strides()[0]}};
strided_span<int, 2> transposed{cs.data(), cs.bounds().total_size(), reverse_bounds};
// slice to get a one-dimensional array of c's
strided_span<int, 1> result = transposed[0];
CHECK(result.bounds().index_bounds()[0] == 4);
CHECK_THROWS_AS(result.bounds().index_bounds()[1], fail_fast);
int i = 0;
for (auto& num : result) {
CHECK(num == arr[i].c);
i++;
}
}

File diff suppressed because it is too large Load Diff

18
Telegram/ThirdParty/GSL/tests/test.cpp vendored Normal file
View File

@ -0,0 +1,18 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#define CATCH_CONFIG_MAIN
#include <catch/catch.hpp>

View File

@ -0,0 +1,110 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#include <catch/catch.hpp>
#include <gsl/gsl>
#include <functional>
using namespace gsl;
void f(int& i) { i += 1; }
TEST_CASE("finally_lambda")
{
int i = 0;
{
auto _ = finally([&]() { f(i); });
CHECK(i == 0);
}
CHECK(i == 1);
}
TEST_CASE("finally_lambda_move")
{
int i = 0;
{
auto _1 = finally([&]() { f(i); });
{
auto _2 = std::move(_1);
CHECK(i == 0);
}
CHECK(i == 1);
{
auto _2 = std::move(_1);
CHECK(i == 1);
}
CHECK(i == 1);
}
CHECK(i == 1);
}
TEST_CASE("finally_function_with_bind")
{
int i = 0;
{
auto _ = finally(std::bind(&f, std::ref(i)));
CHECK(i == 0);
}
CHECK(i == 1);
}
int j = 0;
void g() { j += 1; }
TEST_CASE("finally_function_ptr")
{
j = 0;
{
auto _ = finally(&g);
CHECK(j == 0);
}
CHECK(j == 1);
}
TEST_CASE("narrow_cast")
{
int n = 120;
char c = narrow_cast<char>(n);
CHECK(c == 120);
n = 300;
unsigned char uc = narrow_cast<unsigned char>(n);
CHECK(uc == 44);
}
TEST_CASE("narrow")
{
int n = 120;
const char c = narrow<char>(n);
CHECK(c == 120);
n = 300;
CHECK_THROWS_AS(narrow<char>(n), narrowing_error);
const auto int32_max = std::numeric_limits<int32_t>::max();
const auto int32_min = std::numeric_limits<int32_t>::min();
CHECK(narrow<uint32_t>(int32_t(0)) == 0);
CHECK(narrow<uint32_t>(int32_t(1)) == 1);
CHECK(narrow<uint32_t>(int32_max) == static_cast<uint32_t>(int32_max));
CHECK_THROWS_AS(narrow<uint32_t>(int32_t(-1)), narrowing_error);
CHECK_THROWS_AS(narrow<uint32_t>(int32_min), narrowing_error);
n = -42;
CHECK_THROWS_AS(narrow<unsigned>(n), narrowing_error);
}