vesper/nucleus/src/arch/aarch64/memory/mmu.rs

722 lines
23 KiB
Rust

/*
* SPDX-License-Identifier: MIT OR BlueOak-1.0.0
* Copyright (c) 2018-2019 Andre Richter <andre.o.richter@gmail.com>
* Copyright (c) Berkus Decker <berkus+vesper@metta.systems>
* Original code distributed under MIT, additional changes are under BlueOak-1.0.0
*/
//! MMU initialisation.
//!
//! Paging is mostly based on [previous version](https://os.phil-opp.com/page-tables/) of
//! Phil Opp's [paging guide](https://os.phil-opp.com/paging-implementation/) and
//! [ARMv8 ARM memory addressing](https://static.docs.arm.com/100940/0100/armv8_a_address%20translation_100940_0100_en.pdf).
use {
crate::{
arch::aarch64::memory::{
get_virt_addr_properties, AttributeFields, /*FrameAllocator, PhysAddr, VirtAddr,*/
},
println,
},
// bitflags::bitflags,
core::{
// convert::TryInto,
// fmt,
marker::PhantomData,
ops::{Index, IndexMut},
// ptr::Unique,
},
cortex_a::{
asm::barrier,
registers::{ID_AA64MMFR0_EL1, SCTLR_EL1, TCR_EL1, TTBR0_EL1},
},
tock_registers::{
fields::FieldValue,
interfaces::{ReadWriteable, Readable, Writeable},
register_bitfields,
},
// ux::*,
};
mod mair {
use cortex_a::registers::MAIR_EL1;
use tock_registers::interfaces::Writeable;
/// Setup function for the MAIR_EL1 register.
pub fn set_up() {
// Define the three memory types that we will map. Normal DRAM, Uncached and device.
MAIR_EL1.write(
// Attribute 2 -- Device Memory
MAIR_EL1::Attr2_Device::nonGathering_nonReordering_EarlyWriteAck
// Attribute 1 -- Non Cacheable DRAM
+ MAIR_EL1::Attr1_Normal_Outer::NonCacheable
+ MAIR_EL1::Attr1_Normal_Inner::NonCacheable
// Attribute 0 -- Regular Cacheable
+ MAIR_EL1::Attr0_Normal_Outer::WriteBack_NonTransient_ReadWriteAlloc
+ MAIR_EL1::Attr0_Normal_Inner::WriteBack_NonTransient_ReadWriteAlloc,
);
}
// Three descriptive consts for indexing into the correct MAIR_EL1 attributes.
pub mod attr {
pub const NORMAL: u64 = 0;
pub const NORMAL_NON_CACHEABLE: u64 = 1;
pub const DEVICE_NGNRE: u64 = 2;
// DEVICE_GRE
// DEVICE_NGNRNE
}
}
/// Parse the ID_AA64MMFR0_EL1 register for runtime information about supported MMU features.
/// Print the current state of TCR register.
pub fn print_features() {
// use crate::cortex_a::regs::RegisterReadWrite;
let sctlr = SCTLR_EL1.extract();
if let Some(SCTLR_EL1::M::Value::Enable) = sctlr.read_as_enum(SCTLR_EL1::M) {
println!("[i] MMU currently enabled");
}
if let Some(SCTLR_EL1::I::Value::Cacheable) = sctlr.read_as_enum(SCTLR_EL1::I) {
println!("[i] MMU I-cache enabled");
}
if let Some(SCTLR_EL1::C::Value::Cacheable) = sctlr.read_as_enum(SCTLR_EL1::C) {
println!("[i] MMU D-cache enabled");
}
let mmfr = ID_AA64MMFR0_EL1.extract();
if let Some(ID_AA64MMFR0_EL1::TGran4::Value::Supported) =
mmfr.read_as_enum(ID_AA64MMFR0_EL1::TGran4)
{
println!("[i] MMU: 4 KiB granule supported!");
}
if let Some(ID_AA64MMFR0_EL1::TGran16::Value::Supported) =
mmfr.read_as_enum(ID_AA64MMFR0_EL1::TGran16)
{
println!("[i] MMU: 16 KiB granule supported!");
}
if let Some(ID_AA64MMFR0_EL1::TGran64::Value::Supported) =
mmfr.read_as_enum(ID_AA64MMFR0_EL1::TGran64)
{
println!("[i] MMU: 64 KiB granule supported!");
}
match mmfr.read_as_enum(ID_AA64MMFR0_EL1::ASIDBits) {
Some(ID_AA64MMFR0_EL1::ASIDBits::Value::Bits_16) => {
println!("[i] MMU: 16 bit ASIDs supported!")
}
Some(ID_AA64MMFR0_EL1::ASIDBits::Value::Bits_8) => {
println!("[i] MMU: 8 bit ASIDs supported!")
}
_ => println!("[i] MMU: Invalid ASID bits specified!"),
}
match mmfr.read_as_enum(ID_AA64MMFR0_EL1::PARange) {
Some(ID_AA64MMFR0_EL1::PARange::Value::Bits_32) => {
println!("[i] MMU: Up to 32 Bit physical address range supported!")
}
Some(ID_AA64MMFR0_EL1::PARange::Value::Bits_36) => {
println!("[i] MMU: Up to 36 Bit physical address range supported!")
}
Some(ID_AA64MMFR0_EL1::PARange::Value::Bits_40) => {
println!("[i] MMU: Up to 40 Bit physical address range supported!")
}
Some(ID_AA64MMFR0_EL1::PARange::Value::Bits_42) => {
println!("[i] MMU: Up to 42 Bit physical address range supported!")
}
Some(ID_AA64MMFR0_EL1::PARange::Value::Bits_44) => {
println!("[i] MMU: Up to 44 Bit physical address range supported!")
}
Some(ID_AA64MMFR0_EL1::PARange::Value::Bits_48) => {
println!("[i] MMU: Up to 48 Bit physical address range supported!")
}
Some(ID_AA64MMFR0_EL1::PARange::Value::Bits_52) => {
println!("[i] MMU: Up to 52 Bit physical address range supported!")
}
_ => println!("[i] MMU: Invalid PARange specified!"),
}
let tcr = TCR_EL1.extract();
match tcr.read_as_enum(TCR_EL1::IPS) {
Some(TCR_EL1::IPS::Value::Bits_32) => {
println!("[i] MMU: 32 Bit intermediate physical address size supported!")
}
Some(TCR_EL1::IPS::Value::Bits_36) => {
println!("[i] MMU: 36 Bit intermediate physical address size supported!")
}
Some(TCR_EL1::IPS::Value::Bits_40) => {
println!("[i] MMU: 40 Bit intermediate physical address size supported!")
}
Some(TCR_EL1::IPS::Value::Bits_42) => {
println!("[i] MMU: 42 Bit intermediate physical address size supported!")
}
Some(TCR_EL1::IPS::Value::Bits_44) => {
println!("[i] MMU: 44 Bit intermediate physical address size supported!")
}
Some(TCR_EL1::IPS::Value::Bits_48) => {
println!("[i] MMU: 48 Bit intermediate physical address size supported!")
}
Some(TCR_EL1::IPS::Value::Bits_52) => {
println!("[i] MMU: 52 Bit intermediate physical address size supported!")
}
_ => println!("[i] MMU: Invalid IPS specified!"),
}
match tcr.read_as_enum(TCR_EL1::TG0) {
Some(TCR_EL1::TG0::Value::KiB_4) => println!("[i] MMU: TTBR0 4 KiB granule active!"),
Some(TCR_EL1::TG0::Value::KiB_16) => println!("[i] MMU: TTBR0 16 KiB granule active!"),
Some(TCR_EL1::TG0::Value::KiB_64) => println!("[i] MMU: TTBR0 64 KiB granule active!"),
_ => println!("[i] MMU: Invalid TTBR0 granule size specified!"),
}
let t0sz = tcr.read(TCR_EL1::T0SZ);
println!("[i] MMU: T0sz = 64-{} = {} bits", t0sz, 64 - t0sz);
match tcr.read_as_enum(TCR_EL1::TG1) {
Some(TCR_EL1::TG1::Value::KiB_4) => println!("[i] MMU: TTBR1 4 KiB granule active!"),
Some(TCR_EL1::TG1::Value::KiB_16) => println!("[i] MMU: TTBR1 16 KiB granule active!"),
Some(TCR_EL1::TG1::Value::KiB_64) => println!("[i] MMU: TTBR1 64 KiB granule active!"),
_ => println!("[i] MMU: Invalid TTBR1 granule size specified!"),
}
let t1sz = tcr.read(TCR_EL1::T1SZ);
println!("[i] MMU: T1sz = 64-{} = {} bits", t1sz, 64 - t1sz);
}
register_bitfields! {
u64,
// AArch64 Reference Manual page 2150, D5-2445
STAGE1_DESCRIPTOR [
// In table descriptors
NSTable_EL3 OFFSET(63) NUMBITS(1) [],
/// Access Permissions for subsequent tables
APTable OFFSET(61) NUMBITS(2) [
RW_EL1 = 0b00,
RW_EL1_EL0 = 0b01,
RO_EL1 = 0b10,
RO_EL1_EL0 = 0b11
],
// User execute-never for subsequent tables
UXNTable OFFSET(60) NUMBITS(1) [
Execute = 0,
NeverExecute = 1
],
/// Privileged execute-never for subsequent tables
PXNTable OFFSET(59) NUMBITS(1) [
Execute = 0,
NeverExecute = 1
],
// In block descriptors
// OS-specific data
OSData OFFSET(55) NUMBITS(4) [],
// User execute-never
UXN OFFSET(54) NUMBITS(1) [
Execute = 0,
NeverExecute = 1
],
/// Privileged execute-never
PXN OFFSET(53) NUMBITS(1) [
Execute = 0,
NeverExecute = 1
],
// @fixme ?? where is this described
CONTIGUOUS OFFSET(52) NUMBITS(1) [
False = 0,
True = 1
],
// @fixme ?? where is this described
DIRTY OFFSET(51) NUMBITS(1) [
False = 0,
True = 1
],
/// Various address fields, depending on use case
LVL2_OUTPUT_ADDR_4KiB OFFSET(21) NUMBITS(27) [], // [47:21]
NEXT_LVL_TABLE_ADDR_4KiB OFFSET(12) NUMBITS(36) [], // [47:12]
// @fixme ?? where is this described
NON_GLOBAL OFFSET(11) NUMBITS(1) [
False = 0,
True = 1
],
/// Access flag
AF OFFSET(10) NUMBITS(1) [
False = 0,
True = 1
],
/// Shareability field
SH OFFSET(8) NUMBITS(2) [
OuterShareable = 0b10,
InnerShareable = 0b11
],
/// Access Permissions
AP OFFSET(6) NUMBITS(2) [
RW_EL1 = 0b00,
RW_EL1_EL0 = 0b01,
RO_EL1 = 0b10,
RO_EL1_EL0 = 0b11
],
NS_EL3 OFFSET(5) NUMBITS(1) [],
/// Memory attributes index into the MAIR_EL1 register
AttrIndx OFFSET(2) NUMBITS(3) [],
TYPE OFFSET(1) NUMBITS(1) [
Block = 0,
Table = 1
],
VALID OFFSET(0) NUMBITS(1) [
False = 0,
True = 1
]
]
}
/// A function that maps the generic memory range attributes to HW-specific
/// attributes of the MMU.
fn into_mmu_attributes(
attribute_fields: AttributeFields,
) -> FieldValue<u64, STAGE1_DESCRIPTOR::Register> {
use super::{AccessPermissions, MemAttributes};
// Memory attributes
let mut desc = match attribute_fields.mem_attributes {
MemAttributes::CacheableDRAM => {
STAGE1_DESCRIPTOR::SH::InnerShareable
+ STAGE1_DESCRIPTOR::AttrIndx.val(mair::attr::NORMAL)
}
MemAttributes::NonCacheableDRAM => {
STAGE1_DESCRIPTOR::SH::InnerShareable
+ STAGE1_DESCRIPTOR::AttrIndx.val(mair::attr::NORMAL_NON_CACHEABLE)
}
MemAttributes::Device => {
STAGE1_DESCRIPTOR::SH::OuterShareable
+ STAGE1_DESCRIPTOR::AttrIndx.val(mair::attr::DEVICE_NGNRE)
}
};
// Access Permissions
desc += match attribute_fields.acc_perms {
AccessPermissions::ReadOnly => STAGE1_DESCRIPTOR::AP::RO_EL1,
AccessPermissions::ReadWrite => STAGE1_DESCRIPTOR::AP::RW_EL1,
};
// Execute Never
desc += if attribute_fields.execute_never {
STAGE1_DESCRIPTOR::PXN::NeverExecute
} else {
STAGE1_DESCRIPTOR::PXN::Execute
};
desc
}
/*
* With 4k page granule, a virtual address is split into 4 lookup parts
* spanning 9 bits each:
*
* _______________________________________________
* | | | | | | |
* | signx | Lv0 | Lv1 | Lv2 | Lv3 | off |
* |_______|_______|_______|_______|_______|_______|
* 63-48 47-39 38-30 29-21 20-12 11-00
*
* mask page size
*
* Lv0: FF8000000000 --
* Lv1: 7FC0000000 1G
* Lv2: 3FE00000 2M
* Lv3: 1FF000 4K
* off: FFF
*
* RPi3 supports 64K and 4K granules, also 40-bit physical addresses.
* It also can address only 1G physical memory, so these 40-bit phys addresses are a fake.
*
* 48-bit virtual address space; different mappings in VBAR0 (EL0) and VBAR1 (EL1+).
*/
/// Number of entries in a 4KiB mmu table.
pub const NUM_ENTRIES_4KIB: u64 = 512;
/// Trait for abstracting over the possible page sizes, 4KiB, 16KiB, 2MiB, 1GiB.
pub trait PageSize: Copy + Eq + PartialOrd + Ord {
/// The page size in bytes.
const SIZE: u64;
/// A string representation of the page size for debug output.
const SIZE_AS_DEBUG_STR: &'static str;
/// The page shift in bits.
const SHIFT: usize;
/// The page mask in bits.
const MASK: u64;
}
/// This trait is implemented for 4KiB, 16KiB, and 2MiB pages, but not for 1GiB pages.
pub trait NotGiantPageSize: PageSize {} // @todo doesn't have to be pub??
/// A standard 4KiB page.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum Size4KiB {}
impl PageSize for Size4KiB {
const SIZE: u64 = 4096;
const SIZE_AS_DEBUG_STR: &'static str = "4KiB";
const SHIFT: usize = 12;
const MASK: u64 = 0xfff;
}
impl NotGiantPageSize for Size4KiB {}
/// A “huge” 2MiB page.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum Size2MiB {}
impl PageSize for Size2MiB {
const SIZE: u64 = Size4KiB::SIZE * NUM_ENTRIES_4KIB;
const SIZE_AS_DEBUG_STR: &'static str = "2MiB";
const SHIFT: usize = 21;
const MASK: u64 = 0x1fffff;
}
impl NotGiantPageSize for Size2MiB {}
type EntryFlags = tock_registers::fields::FieldValue<u64, STAGE1_DESCRIPTOR::Register>;
// type EntryRegister = register::LocalRegisterCopy<u64, STAGE1_DESCRIPTOR::Register>;
/// L0 table -- only pointers to L1 tables
pub enum PageGlobalDirectory {}
/// L1 tables -- pointers to L2 tables or giant 1GiB pages
pub enum PageUpperDirectory {}
/// L2 tables -- pointers to L3 tables or huge 2MiB pages
pub enum PageDirectory {}
/// L3 tables -- only pointers to 4/16KiB pages
pub enum PageTable {}
/// Shared trait for specific table levels.
pub trait TableLevel {}
/// Shared trait for hierarchical table levels.
///
/// Specifies what is the next level of page table hierarchy.
pub trait HierarchicalLevel: TableLevel {
/// Level of the next translation table below this one.
type NextLevel: TableLevel;
}
impl TableLevel for PageGlobalDirectory {}
impl TableLevel for PageUpperDirectory {}
impl TableLevel for PageDirectory {}
impl TableLevel for PageTable {}
impl HierarchicalLevel for PageGlobalDirectory {
type NextLevel = PageUpperDirectory;
}
impl HierarchicalLevel for PageUpperDirectory {
type NextLevel = PageDirectory;
}
impl HierarchicalLevel for PageDirectory {
type NextLevel = PageTable;
}
// PageTables do not have next level, therefore they are not HierarchicalLevel
/// MMU address translation table.
/// Contains just u64 internally, provides enum interface on top
#[repr(C)]
#[repr(align(4096))]
pub struct Table<L: TableLevel> {
entries: [u64; NUM_ENTRIES_4KIB as usize],
level: PhantomData<L>,
}
// Implementation code shared for all levels of page tables
impl<L> Table<L>
where
L: TableLevel,
{
/// Zero out entire table.
pub fn zero(&mut self) {
for entry in self.entries.iter_mut() {
*entry = 0;
}
}
}
impl<L> Index<usize> for Table<L>
where
L: TableLevel,
{
type Output = u64;
fn index(&self, index: usize) -> &u64 {
&self.entries[index]
}
}
impl<L> IndexMut<usize> for Table<L>
where
L: TableLevel,
{
fn index_mut(&mut self, index: usize) -> &mut u64 {
&mut self.entries[index]
}
}
/// Type-safe enum wrapper covering Table<L>'s 64-bit entries.
#[derive(Clone)]
// #[repr(transparent)]
enum PageTableEntry {
/// Empty page table entry.
Invalid,
/// Table descriptor is a L0, L1 or L2 table pointing to another table.
/// L0 tables can only point to L1 tables.
/// A descriptor pointing to the next page table.
TableDescriptor(EntryFlags),
/// A Level2 block descriptor with 2 MiB aperture.
///
/// The output points to physical memory.
Lvl2BlockDescriptor(EntryFlags),
/// A page PageTableEntry::descriptor with 4 KiB aperture.
///
/// The output points to physical memory.
PageDescriptor(EntryFlags),
}
/// A descriptor pointing to the next page table. (within PageTableEntry enum)
// struct TableDescriptor(register::FieldValue<u64, STAGE1_DESCRIPTOR::Register>);
impl PageTableEntry {
fn new_table_descriptor(next_lvl_table_addr: usize) -> Result<PageTableEntry, &'static str> {
if next_lvl_table_addr % Size4KiB::SIZE as usize != 0 {
// @todo SIZE must be usize
return Err("TableDescriptor: Address is not 4 KiB aligned.");
}
let shifted = next_lvl_table_addr >> Size4KiB::SHIFT;
Ok(PageTableEntry::TableDescriptor(
STAGE1_DESCRIPTOR::VALID::True
+ STAGE1_DESCRIPTOR::TYPE::Table
+ STAGE1_DESCRIPTOR::NEXT_LVL_TABLE_ADDR_4KiB.val(shifted as u64),
))
}
}
/// A Level2 block descriptor with 2 MiB aperture.
///
/// The output points to physical memory.
// struct Lvl2BlockDescriptor(register::FieldValue<u64, STAGE1_DESCRIPTOR::Register>);
impl PageTableEntry {
fn new_lvl2_block_descriptor(
output_addr: usize,
attribute_fields: AttributeFields,
) -> Result<PageTableEntry, &'static str> {
if output_addr % Size2MiB::SIZE as usize != 0 {
return Err("BlockDescriptor: Address is not 2 MiB aligned.");
}
let shifted = output_addr >> Size2MiB::SHIFT;
Ok(PageTableEntry::Lvl2BlockDescriptor(
STAGE1_DESCRIPTOR::VALID::True
+ STAGE1_DESCRIPTOR::AF::True
+ into_mmu_attributes(attribute_fields)
+ STAGE1_DESCRIPTOR::TYPE::Block
+ STAGE1_DESCRIPTOR::LVL2_OUTPUT_ADDR_4KiB.val(shifted as u64),
))
}
}
/// A page descriptor with 4 KiB aperture.
///
/// The output points to physical memory.
impl PageTableEntry {
fn new_page_descriptor(
output_addr: usize,
attribute_fields: AttributeFields,
) -> Result<PageTableEntry, &'static str> {
if output_addr % Size4KiB::SIZE as usize != 0 {
return Err("PageDescriptor: Address is not 4 KiB aligned.");
}
let shifted = output_addr >> Size4KiB::SHIFT;
Ok(PageTableEntry::PageDescriptor(
STAGE1_DESCRIPTOR::VALID::True
+ STAGE1_DESCRIPTOR::AF::True
+ into_mmu_attributes(attribute_fields)
+ STAGE1_DESCRIPTOR::TYPE::Table
+ STAGE1_DESCRIPTOR::NEXT_LVL_TABLE_ADDR_4KiB.val(shifted as u64),
))
}
}
impl From<u64> for PageTableEntry {
fn from(_val: u64) -> PageTableEntry {
// xxx0 -> Invalid
// xx11 -> TableDescriptor on L0, L1 and L2
// xx10 -> Block Entry L1 and L2
// xx11 -> PageDescriptor L3
PageTableEntry::Invalid
}
}
impl From<PageTableEntry> for u64 {
fn from(val: PageTableEntry) -> u64 {
match val {
PageTableEntry::Invalid => 0,
PageTableEntry::TableDescriptor(x)
| PageTableEntry::Lvl2BlockDescriptor(x)
| PageTableEntry::PageDescriptor(x) => x.value,
}
}
}
static mut LVL2_TABLE: Table<PageDirectory> = Table::<PageDirectory> {
entries: [0; NUM_ENTRIES_4KIB as usize],
level: PhantomData,
};
static mut LVL3_TABLE: Table<PageTable> = Table::<PageTable> {
entries: [0; NUM_ENTRIES_4KIB as usize],
level: PhantomData,
};
trait BaseAddr {
fn base_addr_u64(&self) -> u64;
fn base_addr_usize(&self) -> usize;
}
impl BaseAddr for [u64; 512] {
fn base_addr_u64(&self) -> u64 {
self as *const u64 as u64
}
fn base_addr_usize(&self) -> usize {
self as *const u64 as usize
}
}
/// Set up identity mapped page tables for the first 1 gigabyte of address space.
/// default: 880 MB ARM ram, 128MB VC
///
/// # Safety
///
/// Completely unsafe, we're in the hardware land! Incorrectly initialised tables will just
/// restart the CPU.
pub unsafe fn init() -> Result<(), &'static str> {
// Prepare the memory attribute indirection register.
mair::set_up();
// Point the first 2 MiB of virtual addresses to the follow-up LVL3
// page-table.
LVL2_TABLE.entries[0] =
PageTableEntry::new_table_descriptor(LVL3_TABLE.entries.base_addr_usize())?.into();
// Fill the rest of the LVL2 (2 MiB) entries as block descriptors.
//
// Notice the skip(1) which makes the iteration start at the second 2 MiB
// block (0x20_0000).
for (block_descriptor_nr, entry) in LVL2_TABLE.entries.iter_mut().enumerate().skip(1) {
let virt_addr = block_descriptor_nr << Size2MiB::SHIFT;
let (output_addr, attribute_fields) = match get_virt_addr_properties(virt_addr) {
Err(s) => return Err(s),
Ok((a, b)) => (a, b),
};
let block_desc =
match PageTableEntry::new_lvl2_block_descriptor(output_addr, attribute_fields) {
Err(s) => return Err(s),
Ok(desc) => desc,
};
*entry = block_desc.into();
}
// Finally, fill the single LVL3 table (4 KiB granule).
for (page_descriptor_nr, entry) in LVL3_TABLE.entries.iter_mut().enumerate() {
let virt_addr = page_descriptor_nr << Size4KiB::SHIFT;
let (output_addr, attribute_fields) = match get_virt_addr_properties(virt_addr) {
Err(s) => return Err(s),
Ok((a, b)) => (a, b),
};
let page_desc = match PageTableEntry::new_page_descriptor(output_addr, attribute_fields) {
Err(s) => return Err(s),
Ok(desc) => desc,
};
*entry = page_desc.into();
}
// Point to the LVL2 table base address in TTBR0.
TTBR0_EL1.set_baddr(LVL2_TABLE.entries.base_addr_u64()); // User (lo-)space addresses
// TTBR1_EL1.set_baddr(LVL2_TABLE.entries.base_addr_u64()); // Kernel (hi-)space addresses
// Configure various settings of stage 1 of the EL1 translation regime.
let ips = ID_AA64MMFR0_EL1.read(ID_AA64MMFR0_EL1::PARange);
TCR_EL1.write(
TCR_EL1::TBI0::Ignored // @todo TBI1 also set to Ignored??
+ TCR_EL1::IPS.val(ips) // Intermediate Physical Address Size
// ttbr0 user memory addresses
+ TCR_EL1::TG0::KiB_4 // 4 KiB granule
+ TCR_EL1::SH0::Inner
+ TCR_EL1::ORGN0::WriteBack_ReadAlloc_WriteAlloc_Cacheable
+ TCR_EL1::IRGN0::WriteBack_ReadAlloc_WriteAlloc_Cacheable
+ TCR_EL1::EPD0::EnableTTBR0Walks
+ TCR_EL1::T0SZ.val(34) // ARMv8ARM Table D5-11 minimum TxSZ for starting table level 2
// ttbr1 kernel memory addresses
+ TCR_EL1::TG1::KiB_4 // 4 KiB granule
+ TCR_EL1::SH1::Inner
+ TCR_EL1::ORGN1::WriteBack_ReadAlloc_WriteAlloc_Cacheable
+ TCR_EL1::IRGN1::WriteBack_ReadAlloc_WriteAlloc_Cacheable
+ TCR_EL1::EPD1::EnableTTBR1Walks
+ TCR_EL1::T1SZ.val(34), // ARMv8ARM Table D5-11 minimum TxSZ for starting table level 2
);
// Switch the MMU on.
//
// First, force all previous changes to be seen before the MMU is enabled.
barrier::isb(barrier::SY);
// use cortex_a::regs::RegisterReadWrite;
// Enable the MMU and turn on data and instruction caching.
SCTLR_EL1.modify(SCTLR_EL1::M::Enable + SCTLR_EL1::C::Cacheable + SCTLR_EL1::I::Cacheable);
// Force MMU init to complete before next instruction
/*
* Invalidate the local I-cache so that any instructions fetched
* speculatively from the PoC are discarded, since they may have
* been dynamically patched at the PoU.
*/
barrier::isb(barrier::SY);
Ok(())
}