445 lines
13 KiB
Rust
445 lines
13 KiB
Rust
/*
|
|
* SPDX-License-Identifier: BlueOak-1.0.0
|
|
* Copyright (c) Berkus Decker <berkus+vesper@metta.systems>
|
|
*
|
|
* Based on ideas from Jorge Aparicio, Andre Richter, Phil Oppenheimer, Sergio Benitez.
|
|
*/
|
|
|
|
//! Low-level boot of the Raspberry's processor
|
|
//! <http://infocenter.arm.com/help/topic/com.arm.doc.dai0527a/DAI0527A_baremetal_boot_code_for_ARMv8_A_processors.pdf>
|
|
|
|
use {
|
|
crate::endless_sleep,
|
|
cortex_a::{asm, regs::*},
|
|
};
|
|
|
|
//use crate::arch::caps::{CapNode, Capability};
|
|
|
|
// Stack placed before first executable instruction
|
|
const STACK_START: u64 = 0x0008_0000; // Keep in sync with linker script
|
|
|
|
/// Type check the user-supplied entry function.
|
|
#[macro_export]
|
|
macro_rules! entry {
|
|
($path:path) => {
|
|
/// # Safety
|
|
/// Only type-checks!
|
|
#[export_name = "main"]
|
|
pub unsafe fn __main() -> ! {
|
|
// type check the given path
|
|
let f: fn() -> ! = $path;
|
|
|
|
f()
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Reset function.
|
|
///
|
|
/// Initializes the bss section before calling into the user's `main()`.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// Totally unsafe! We're in the hardware land.
|
|
#[link_section = ".text.boot"]
|
|
unsafe fn reset() -> ! {
|
|
extern "C" {
|
|
// Boundaries of the .bss section, provided by the linker script
|
|
static mut __BSS_START: u64;
|
|
static mut __BSS_END: u64;
|
|
}
|
|
|
|
// Zeroes the .bss section
|
|
r0::zero_bss(&mut __BSS_START, &mut __BSS_END);
|
|
|
|
extern "Rust" {
|
|
fn main() -> !;
|
|
}
|
|
|
|
main()
|
|
}
|
|
|
|
// [ARMv6 unaligned data access restrictions](https://developer.arm.com/documentation/ddi0333/h/unaligned-and-mixed-endian-data-access-support/unaligned-access-support/armv6-unaligned-data-access-restrictions?lang=en)
|
|
// dictates that compatibility bit U in CP15 must be set to 1 to allow Unaligned accesses while MMU is off.
|
|
// (In addition to SCTLR_EL1.A being 0)
|
|
// See also [CP15 C1 docs](https://developer.arm.com/documentation/ddi0290/g/system-control-coprocessor/system-control-processor-registers/c1--control-register).
|
|
// #[link_section = ".text.boot"]
|
|
// #[inline]
|
|
// fn enable_armv6_unaligned_access() {
|
|
// unsafe {
|
|
// asm!(
|
|
// "mrc p15, 0, {u}, c1, c0, 0",
|
|
// "or {u}, {u}, {CR_U}",
|
|
// "mcr p15, 0, {u}, c1, c0, 0",
|
|
// u = out(reg) _,
|
|
// CR_U = const 1 << 22
|
|
// );
|
|
// }
|
|
// }
|
|
|
|
#[link_section = ".text.boot"]
|
|
#[inline]
|
|
fn shared_setup_and_enter_pre() {
|
|
// Enable timer counter registers for EL1
|
|
CNTHCTL_EL2.write(CNTHCTL_EL2::EL1PCEN::SET + CNTHCTL_EL2::EL1PCTEN::SET);
|
|
|
|
// No virtual offset for reading the counters
|
|
CNTVOFF_EL2.set(0);
|
|
|
|
// Set System Control Register (EL1)
|
|
// Make memory non-cacheable and disable MMU mapping.
|
|
// Disable alignment checks, because Rust fmt module uses a little optimization
|
|
// that happily reads and writes half-words (ldrh/strh) from/to unaligned addresses.
|
|
SCTLR_EL1.write(
|
|
SCTLR_EL1::I::NonCacheable
|
|
+ SCTLR_EL1::C::NonCacheable
|
|
+ SCTLR_EL1::M::Disable
|
|
+ SCTLR_EL1::A::Disable
|
|
+ SCTLR_EL1::SA::Disable
|
|
+ SCTLR_EL1::SA0::Disable,
|
|
);
|
|
|
|
// enable_armv6_unaligned_access();
|
|
|
|
// Set Hypervisor Configuration Register (EL2)
|
|
// Set EL1 execution state to AArch64
|
|
// @todo Explain the SWIO bit (SWIO hardwired on Pi3)
|
|
HCR_EL2.write(HCR_EL2::RW::EL1IsAarch64 + HCR_EL2::SWIO::SET);
|
|
}
|
|
|
|
#[link_section = ".text.boot"]
|
|
#[inline]
|
|
fn shared_setup_and_enter_post() -> ! {
|
|
// Set up SP_EL1 (stack pointer), which will be used by EL1 once
|
|
// we "return" to it.
|
|
SP_EL1.set(STACK_START);
|
|
|
|
// Use `eret` to "return" to EL1. This will result in execution of
|
|
// `reset()` in EL1.
|
|
asm::eret()
|
|
}
|
|
|
|
/// Real hardware boot-up sequence.
|
|
///
|
|
/// Prepare and execute transition from EL2 to EL1.
|
|
#[link_section = ".text.boot"]
|
|
#[inline]
|
|
fn setup_and_enter_el1_from_el2() -> ! {
|
|
// Set Saved Program Status Register (EL2)
|
|
// Set up a simulated exception return.
|
|
//
|
|
// Fake a saved program status, where all interrupts were
|
|
// masked and SP_EL1 was used as a stack pointer.
|
|
SPSR_EL2.write(
|
|
SPSR_EL2::D::Masked
|
|
+ SPSR_EL2::A::Masked
|
|
+ SPSR_EL2::I::Masked
|
|
+ SPSR_EL2::F::Masked
|
|
+ SPSR_EL2::M::EL1h, // Use SP_EL1
|
|
);
|
|
|
|
// Make the Exception Link Register (EL2) point to reset().
|
|
ELR_EL2.set(reset as *const () as u64);
|
|
|
|
shared_setup_and_enter_post()
|
|
}
|
|
|
|
/// QEMU boot-up sequence.
|
|
///
|
|
/// Processors enter EL3 after reset.
|
|
/// ref: http://infocenter.arm.com/help/topic/com.arm.doc.dai0527a/DAI0527A_baremetal_boot_code_for_ARMv8_A_processors.pdf
|
|
/// section: 5.5.1
|
|
/// However, GPU init code must be switching it down to EL2.
|
|
/// QEMU can't emulate Raspberry Pi properly (no VC boot code), so it starts in EL3.
|
|
///
|
|
/// Prepare and execute transition from EL3 to EL1.
|
|
/// (from https://github.com/s-matyukevich/raspberry-pi-os/blob/master/docs/lesson02/rpi-os.md)
|
|
#[cfg(qemu)]
|
|
#[link_section = ".text.boot"]
|
|
#[inline]
|
|
fn setup_and_enter_el1_from_el3() -> ! {
|
|
// Set Secure Configuration Register (EL3)
|
|
SCR_EL3.write(SCR_EL3::RW::NextELIsAarch64 + SCR_EL3::NS::NonSecure);
|
|
|
|
// Set Saved Program Status Register (EL3)
|
|
// Set up a simulated exception return.
|
|
//
|
|
// Fake a saved program status, where all interrupts were
|
|
// masked and SP_EL1 was used as a stack pointer.
|
|
SPSR_EL3.write(
|
|
SPSR_EL3::D::Masked
|
|
+ SPSR_EL3::A::Masked
|
|
+ SPSR_EL3::I::Masked
|
|
+ SPSR_EL3::F::Masked
|
|
+ SPSR_EL3::M::EL1h, // Use SP_EL1
|
|
);
|
|
|
|
// Make the Exception Link Register (EL3) point to reset().
|
|
ELR_EL3.set(reset as *const () as u64);
|
|
|
|
shared_setup_and_enter_post()
|
|
}
|
|
|
|
/// Entrypoint of the processor.
|
|
///
|
|
/// Parks all cores except core0 and checks if we started in EL2/EL3. If
|
|
/// so, proceeds with setting up EL1.
|
|
///
|
|
/// This is invoked from the linker script, does arch-specific init
|
|
/// and passes control to the kernel boot function reset().
|
|
///
|
|
/// Dissection of various RPi core boot stubs is available
|
|
/// [here](https://leiradel.github.io/2019/01/20/Raspberry-Pi-Stubs.html).
|
|
///
|
|
#[no_mangle]
|
|
#[link_section = ".text.boot.entry"]
|
|
pub unsafe extern "C" fn _boot_cores() -> ! {
|
|
const CORE_0: u64 = 0;
|
|
const CORE_MASK: u64 = 0x3;
|
|
// Can't match values with dots in match, so use intermediate consts.
|
|
#[cfg(qemu)]
|
|
const EL3: u64 = CurrentEL::EL::EL3.value;
|
|
const EL2: u64 = CurrentEL::EL::EL2.value;
|
|
const EL1: u64 = CurrentEL::EL::EL1.value;
|
|
|
|
// Set stack pointer. Used in case we started in EL1.
|
|
SP.set(STACK_START);
|
|
|
|
shared_setup_and_enter_pre();
|
|
|
|
if CORE_0 == MPIDR_EL1.get() & CORE_MASK {
|
|
match CurrentEL.get() {
|
|
#[cfg(qemu)]
|
|
EL3 => setup_and_enter_el1_from_el3(),
|
|
EL2 => setup_and_enter_el1_from_el2(),
|
|
EL1 => reset(),
|
|
_ => endless_sleep(),
|
|
}
|
|
}
|
|
|
|
// if not core0 or not EL3/EL2/EL1, infinitely wait for events
|
|
endless_sleep()
|
|
}
|
|
|
|
/*
|
|
// caps and mem regions init
|
|
|
|
enum KernelInitError {}
|
|
|
|
fn map_kernel_window() {}
|
|
|
|
/**
|
|
* This and only this function initialises the CPU.
|
|
* It does NOT initialise any kernel state.
|
|
*/
|
|
fn init_cpu() -> Result<(), KernelInitError> {
|
|
activate_global_pd();
|
|
}
|
|
|
|
/**
|
|
* This and only this function initialises the platform.
|
|
* It does NOT initialise any kernel state.
|
|
*/
|
|
fn init_plat() -> Result<(), KernelInitError> {
|
|
initIRQController();
|
|
initTimer();
|
|
initL2Cache();
|
|
}
|
|
|
|
fn arch_init_freemem() -> Result<(), KernelInitError> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn create_domain_cap() -> Result<(), KernelInitError> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn init_irqs() -> Result<(), KernelInitError> {
|
|
for (irq_t i = 0; i <= maxIRQ; i++) {
|
|
setIRQState(IRQInactive, i);
|
|
}
|
|
setIRQState(IRQTimer, GPT9_IRQ);
|
|
/* provide the IRQ control cap */
|
|
write_slot((((slot_ptr_t)((pptr_t)cap_get_capPtr(root_cnode_cap))) + (seL4_CapIRQControl)), cap_irq_control_cap_new());
|
|
}
|
|
|
|
fn create_bootinfo_cap() -> Result<(), KernelInitError> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn create_asid_pool_for_initial_thread() -> Result<(), KernelInitError> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn create_idle_thread() -> Result<(), KernelInitError> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn clean_invalidate_l1_caches() -> Result<(), KernelInitError> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn create_initial_thread() -> Result<(), KernelInitError> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn init_core_state(_: Result<(), KernelInitError>) -> Result<(), KernelInitError> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn create_untypeds() -> Result<(), KernelInitError> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn finalise_bootinfo() -> Result<(), KernelInitError> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn invalidate_local_tlb() -> Result<(), KernelInitError> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn lock_kernel_node() -> Result<(), KernelInitError> {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn schedule() {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn activate_thread() {
|
|
unimplemented!();
|
|
}
|
|
|
|
#[link_section = ".text.boot"]
|
|
// #[used]
|
|
fn try_init_kernel() -> Result<(), KernelInitError> {
|
|
map_kernel_window();
|
|
init_cpu()?;
|
|
init_plat()?;
|
|
|
|
println!("Booting kernel");
|
|
|
|
init_free_memory()?; // arch_init_freemem()
|
|
|
|
let root_capnode_cap = create_root_capnode()?;
|
|
create_domain_cap(root_capnode_cap);
|
|
// ...create IRQ CapNode...
|
|
init_irqs(root_capnode_cap)?;
|
|
|
|
//fill in boot info and
|
|
// create bootinfo frame
|
|
|
|
// create initial address space covering init thread
|
|
// user image and ipc buffer and bootinfo frame
|
|
|
|
// create and map bootinfo frame cap
|
|
create_bootinfo_cap();
|
|
|
|
// create initial thread IPC buffer
|
|
|
|
// create userland image frames
|
|
|
|
// create initial thread ASID pool
|
|
let it_asid_pool_cap = create_asid_pool_for_initial_thread(root_capnode_cap)?;
|
|
|
|
// create the idle thread
|
|
create_idle_thread()?;
|
|
|
|
/* Before creating the initial thread (which also switches to it)
|
|
* we clean the cache so that any page table information written
|
|
* as a result of calling create_frames_of_region will be correctly
|
|
* read by the hardware page table walker */
|
|
clean_invalidate_l1_caches();
|
|
|
|
let it = create_initial_thread(root_capnode_cap)?;
|
|
|
|
/* create all of the untypeds. Both devices and kernel window memory */
|
|
create_untypeds(root_capnode_cap)?;
|
|
|
|
finalise_bootinfo();
|
|
|
|
/* make everything written by the kernel visible to userland. Cleaning to PoC is not
|
|
* strictly neccessary, but performance is not critical here so clean and invalidate
|
|
* everything to PoC */
|
|
clean_invalidate_l1_caches();
|
|
invalidate_local_tlb();
|
|
|
|
/* Export selected CPU features for access by EL0 */
|
|
arch_init_user_access();
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn try_init_kernel_secondary_core() -> Result<(), KernelInitError>
|
|
{
|
|
init_cpu();
|
|
|
|
/* Enable per-CPU timer interrupts */
|
|
maskInterrupt(false, KERNEL_TIMER_IRQ);
|
|
|
|
lock_kernel_node;
|
|
|
|
ksNumCPUs++; // increase global cpu counter - this should be done differently?
|
|
|
|
init_core_state(SchedulerAction_ResumeCurrentThread);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn init_kernel() {
|
|
try_init_kernel()?;
|
|
// or for AP:
|
|
// try_init_kernel_secondary_core();
|
|
schedule();
|
|
activate_thread();
|
|
}
|
|
|
|
const CONFIG_ROOT_CAPNODE_SIZE_BITS: usize = 12;
|
|
const wordBits: usize = 64;
|
|
|
|
fn create_root_capnode() -> Capability // Attr(BOOT_CODE)
|
|
{
|
|
// write the number of root CNode slots to global state
|
|
boot_info.max_slot_pos = 1 << CONFIG_ROOT_CAPNODE_SIZE_BITS; // 12 bits => 4096 slots
|
|
|
|
// seL4_SlotBits = 32 bytes per entry, 4096 entries =>
|
|
// create an empty root CapNode
|
|
// this goes into the kernel startup/heap memory (one of the few items that kernel DOES allocate).
|
|
let region_size = core::mem::size_of::<Capability> * boot_info.max_slot_pos; // 12 + 5 => 131072 (128Kb)
|
|
let pptr = alloc_region(region_size); // GlobalAllocator::alloc_zeroed instead?
|
|
if pptr.is_none() {
|
|
println!("Kernel init failing: could not create root capnode");
|
|
return Capability(NullCap::Type::value);
|
|
}
|
|
let Some(pptr) = pptr;
|
|
memzero(pptr, region_size); // CTE_PTR(pptr) ?
|
|
|
|
// transmute into a type? (you can use ptr.write() to just write a type into memory location)
|
|
|
|
let cap = CapNode::new_root(pptr);
|
|
|
|
// this cnode contains a cap to itself...
|
|
/* write the root CNode cap into the root CNode */
|
|
// @todo rootCapNode.write_slot(CapInitThreadCNode, cap); -- where cap and rootCapNode are synonyms!
|
|
write_slot(SLOT_PTR(pptr, seL4_CapInitThreadCNode), cap);
|
|
|
|
cap // reference to pptr is here
|
|
}
|
|
*/
|
|
|
|
// create initial thread
|
|
// - vspace
|
|
// - cpace
|
|
// - tcb
|
|
//
|
|
// requires:
|
|
// - alloc_region
|
|
// - copy_global_mappings
|
|
// - create pt/pd caps -- this is arch-specific?
|
|
// - root capnode with write_slot()
|
|
//
|
|
// init thread domain = 0
|
|
// init thread asid = 1 (asidInvalid = 0)
|
|
//
|