
Open Access - Preliminary

8-1ARM810 Data Sheet
ARM DDI 0081E

This chapter describes the Memory Management Unit (MMU).

8.1 MMU Program Accessible Registers 8-3
8.2 Address Translation 8-5
8.3 Translation Process 8-6
8.4 Level One Descriptor 8-7
8.5 Page Table Descriptor 8-8
8.6 Section Descriptor 8-9
8.7 Translating Section References 8-10
8.8 Level Two Descriptor 8-11
8.9 Translating Small Page References 8-12
8.10 Translating Large Page References 8-13
8.12 MMU Faults and CPU Aborts 8-16
8.13 Fault Address and Fault Status Registers (FAR and FSR) 8-17
8.14 Domain Access Control 8-19
8.15 Fault Checking Sequence 8-20
8.16 External Aborts 8-23
8.17 Interaction of the MMU, IDC and Write Buffer 8-24
8.18 Effect of Reset 8-25

Memory Management Unit8

Open Access - Preliminary

Memory Management Unit

8-2 ARM810 Data Sheet
ARM DDI 0081E

The Memory Management MMU performs two primary functions: it translates virtual
addresses into physical addresses, and it controls memory access permissions. The
MMU hardware required to perform these functions consists of a Translation Look-
aside Buffer (TLB), access control logic, and translation table walking logic.

The MMU supports memory accesses based on Sections or Pages. Sections are
comprised of 1MB blocks of memory. Two different page sizes are supported: Small
Pages consist of 4KB blocks of memory and Large Pages consist of 64KB blocks of
memory. (Large Pages are supported to allow mapping of a large region of memory
while using only a single entry in the TLB). Additional access control mechanisms are
extended within Small Pages to 1KB Sub-Pages and within Large Pages to 16KB Sub-
Pages.

The MMU also supports the concept of domains - areas of memory that can be defined
to possess individual access rights. The Domain Access Control Register is used to
specify access rights for up to 16 separate domains.

The TLB caches 64 translated entries. During most memory accesses, the TLB
provides the translation information to the access control logic.

If the TLB contains a translated entry for the virtual address, the access control logic
determines whether access is permitted. If access is permitted and an off-chip access
is required, the MMU outputs the appropriate physical address corresponding to the
virtual address. If access is not permitted, the MMU signals the CPU to abort.

If the TLB misses (it does not contain a translated entry for the virtual address), the
translation table walk hardware is invoked to retrieve the translation information from
a translation table in physical memory. Once retrieved, the translation information is
placed into the TLB, possibly overwriting an existing value. The entry to be overwritten
is chosen by cycling sequentially through the TLB locations.

When the MMU is turned off (as happens on reset), the virtual address is output
directly onto the physical address bus.

Open Access - Preliminary

Memory Management Unit

8-3ARM810 Data Sheet
ARM DDI 0081E

8.1 MMU Program Accessible Registers
The following ARM810 System Control Coprocessor (CP15) registers, in conjunction
with page table descriptors stored in memory, determine the operation of the MMU.

 All of these registers except register 8 contain state and can be read using MRC
instructions and written using MCR instructions. Registers 5 and 6 are also written by
the MMU when a data abort is signaled to record the cause of, and address associated
with, an Abort. Writing to Register 8 causes the MMU to perform one of the TLB
operations “Invalidate TLB” or “Invalidate TLB Entry”. Register 8 does not contain state
and cannot be read.

 Depending on the coprocessor instruction used, writing to register 8 with an MCR
instruction causes one of the TLB operations “Invalidate TLB” or “Invalidate TLB Entry”
to be performed by the MMU. Register 8 does not contain state and cannot be read.

System Control Coprocessor is described in Chapter 5, Configuration . The details of
register format and the coprocessor instructions to access them are given there.

 A brief description of these registers is provided below. Each register will be discussed
in more detail within the section that describes its use.

 The Control Register contains bits to enable the MMU (M bit), enable Alignment
checks (A bit), and to control the access protection scheme (S bit and R bit).

 The Translation Table Base Register hold the physical address of the base of the
translation table maintained in main memory. Note that this base must reside on a
16KB boundary.

 The Domain Access Control Register consists of sixteen 2-bit fields, each of which
defines the access permissions for one of sixteen Domains (D15-D0).

 The Fault Status Register indicates the cause of an abort and the domain number
of the aborted access when a data abort occurs. Bits 7:4 specify which of the sixteen
domains (D15-D0) was being accessed when a fault occurred. Bits 3:1 indicate the
type of access being attempted. The encoding of these bits is shown in Table 8-6:
Priority Encoding of Fault Status on page 8-17.

 The Fault Address Register holds the virtual address associated with the access
that caused with abort. See Table 8-6: Priority Encoding of Fault Status on page 8-
17 for details of exactly what address is stored for each type of fault.

 Register Number Bits

 Control Register 1 M,A,S,R

Translation Table Base 2 31 .. 14

Domain Access Control 3 31 .. 0

Fault Status 5 8 .. 0

Fault Address 6 31 .. 0

TLB Operations 8 31 .. 0

TLB Lock down Control 10 31 & 5 .. 0

 Table 8-1: CP15 register functions

Open Access - Preliminary

Memory Management Unit

8-4 ARM810 Data Sheet
ARM DDI 0081E

 Writing to the TLB Operations Register causes the MMU to perform one of the TLB
operations “Invalidate TLB” or “Invalidate TLB Entry” depending on the coprocessor
instruction used. For details, see the description of Register 8 in Chapter 5,
Configuration .

 The TLB Lock-Down Control Register allows specific page table entries to be
locked into the TLB. Locking entries in the TLB guarantees that accesses to the locked
page or section can proceed without incurring the time penalty of a translation table
walk. This allows the execution latency for time-critical pieces of code such as interrupt
handlers to be minimised. Use of the TLB lock down facilities is described in
Chapter 7, Instruction and Data Cache (IDC) .

Open Access - Preliminary

Memory Management Unit

8-5ARM810 Data Sheet
ARM DDI 0081E

8.2 Address Translation
The MMU translates virtual addresses generated by the CPU into physical addresses
to access external memory, and also derives and checks the access permission.
Translation information, which consists of both the address translation data and the
access permission data, resides in a translation table located in physical memory. The
MMU provides the logic needed to traverse this translation table, obtain the translated
address, and check the access permission.

There are three routes by which the address translation (and hence permission check)
takes place. The route taken depends on whether the address in question has been
marked as a section-mapped access or a page-mapped access; and there are two
sizes of page-mapped access (large pages and small pages). However, the translation
process always starts out in the same way, as described below, with a Level One fetch.
A section-mapped access only requires a Level One fetch, but a page-mapped access
also requires a Level Two fetch.

Open Access - Preliminary

Memory Management Unit

8-6 ARM810 Data Sheet
ARM DDI 0081E

8.3 Translation Process

8.3.1 Translation table base
The translation process is initiated when the on-chip TLB does not contain an entry for
the requested virtual address. The Translation Table Base (TTB) Register points to the
base of a table in physical memory which contains Section and/or Page descriptors.
The 14 low-order bits of the TTB Register are set to zero as illustrated in Figure 8-1:
Translation table base register ; the table must reside on a 16KB boundary.

 Figure 8-1: Translation table base register

8.3.2 Level one fetch
Bits 31:14 of the Translation Table Base register are concatenated with bits 31:20 of
the virtual address to produce a 30-bit address as illustrated in Figure 8-2: Accessing
the translation table first level descriptors . This address selects a four-byte
translation table entry which is a First Level Descriptor for either a Section or a Page
(bit1 of the descriptor returned specifies whether it is for a Section or Page)

.

 Figure 8-2: Accessing the translation table first level descriptors

0131431

Translation Table Base

0192031

031

Table Index Section Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

18
12

First Level Descriptor
031

Open Access - Preliminary

Memory Management Unit

8-7ARM810 Data Sheet
ARM DDI 0081E

8.4 Level One Descriptor
The Level One Descriptor returned is either a Page Table Descriptor or a Section
Descriptor, and its format varies accordingly. The following figure illustrates the format
of Level One Descriptors.

 Figure 8-3: Level one descriptors

The two least significant bits indicate the descriptor type and valididty, and are
interpreted as shown below..

01234589101112192031

0 Fault

Page

Section

Reserved

0

0 1

1 0

1 1

C B

Domain

DomainAP

Page Table Base Address

Section Base Address 1

1

Value Meaning Notes

 0 0 Invalid Generates a Section Translation Fault

 0 1 Page Indicates that this is a Page Descriptor

 1 0 Section Indicates that this is a Section Descriptor

 1 1 Reserved Reserved for future use

 Table 8-2: Interpreting level one descriptor bits [1:0]

Open Access - Preliminary

Memory Management Unit

8-8 ARM810 Data Sheet
ARM DDI 0081E

8.5 Page Table Descriptor
Bits 3:2 are always written as 0.

Bit 4 should be written to 1 for backward compatibility.

Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access
Control Register) that contain the primary access controls.

Bits 31:10 form the base for referencing the Page Table Entry. (The page table index
for the entry is derived from the virtual address as illustrated in Figure 8-6: Small
page translation on page 8-12).

If a Page Table Descriptor is returned from the Level One fetch, a Level Two fetch is
initiated as described below.

Open Access - Preliminary

Memory Management Unit

8-9ARM810 Data Sheet
ARM DDI 0081E

8.6 Section Descriptor
Bits 3:2 (C, & B) The C & B bits together indicate whether the area of memory mapped
by this section is treated as write-back cacheable, write-through cacheable, non
cached buffered or non-cached non-buffered. Reference section 7.1.1 Cacheable and
Bufferable Status of Memory Regions.

Bit 4 should be written to 1 for backward compatibility.

Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access
Control Register) that contain the primary access controls.

Bits 11:10 (AP) specify the access permissions for this section and are interpreted as
shown in Table 8-3: Interpreting access permission (AP) Bits on page 8-9. Their
interpretation is dependent upon the setting of the S and R bits (control register bits 8
and 9). Note that the Domain Access Control specifies the primary access control; the
AP bits only have an effect in client mode. Refer to section on access permissions

Bits 19:12 are always written as 0.

Bits 31:20 form the corresponding bits of the physical address for the 1MByte section.

AP S R Permissions
Supervisor User

Notes

00 0 0 No Access No Access Any access generates a permission fault

00 1 0 Read Only No Access Supervisor read only permitted

00 0 1 Read Only Read Only Any write generates a permission fault

00 1 1 Reserved

01 x x Read/Write No Access Access allowed only in Supervisor mode

10 x x Read/Write Read Only Writes in User mode cause permission
fault

11 x x Read/Write Read/Write All access types permitted in both
modes.

xx 1 1 Reserved

 Table 8-3: Interpreting access permission (AP) Bits

Open Access - Preliminary

Memory Management Unit

8-10 ARM810 Data Sheet
ARM DDI 0081E

8.7 Translating Section References
Figure 8-4: Section translation illustrates the complete Section translation
sequence. Note that the access permissions contained in the Level One Descriptor
must be checked before the physical address is generated. The sequence for checking
access permissions is described below.

 Figure 8-4: Section translation

0192031

1 0C BDomainAPSection Base Address

031

Table Index Section Index

Virtual Address

Translation Base

01234589101112192031

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

0192031

Section Base Address Section Index

Physical Address
12

20

18
12

1

Open Access - Preliminary

Memory Management Unit

8-11ARM810 Data Sheet
ARM DDI 0081E

8.8 Level Two Descriptor
If the Level One fetch returns a Page Table Descriptor, this provides the base address
of the page table to be used. The page table is then accessed as described in Figure
8-6: Small page translation on page 8-12, and a Page Table Entry, or Level Two
Descriptor, is returned. This in turn may define either a Small Page or a Large Page
access. The figure below shows the format of Level Two Descriptors

.

 Figure 8-5: Page table entry (level two descriptor)

The two least significant bits indicate the page size and validity, and are interpreted as
follows.

Bit 3:2 (C : B) - The C & B bits together indicate whether the area of memory mapped
by this section is treated as write-back cacheable, write-through cacheable, non
cached buffered or non-cached non-buffered. Reference section 7.1.1 Cacheable and
Bufferable Status of Memory Regions.

Bits 11:4 specify the access permissions (ap3 - ap0) for the four sub-pages and
interpretation of these bits is described earlier in Table 8-2: Interpreting level one
descriptor bits [1:0] on page 8-7.

For large pages, bits 15:12 are programmed as 0.

Bits 31:12 (small pages) or bits 31:16 (large pages) are used to form the
corresponding bits of the physical address - the physical page number. (The page
index is derived from the virtual address as illustrated in Figure 8-6: Small page
translation on page 8-12 and Figure 8-7: Large page Ttanslation on page 8-13).

01234589101112192031

0 Fault

Large Page

Small Page

Reserved

0

0 1

1 0

1 1

C Bap3

Large Page Base Address

Small Page Base Address

671516

ap3

ap2

ap2

ap1

ap1

ap0

ap0 C B

Value Meaning Notes

 0 0 Invalid Generates a Page Translation Fault

 0 1 Large Page Indicates that this is a 64 KB Page

 1 0 Small Page Indicates that this is a 4 KB Page

 1 1 Reserved Reserved for future use

 Table 8-4: Interpreting page table entry Bits 1:0

Open Access - Preliminary

Memory Management Unit

8-12 ARM810 Data Sheet
ARM DDI 0081E

8.9 Translating Small Page References
Figure 8-6: Small page translation illustrates the complete translation sequence for
a 4KB Small Page. Page translation involves one additional step beyond that of a
section translation: the Level One descriptor is the Page Table descriptor, and this is
used to point to the Level Two descriptor, or Page Table Entry. (Note that the access
permissions are now contained in the Level Two descriptor and must be checked
before the physical address is generated. The sequence for checking access
permissions is described later).

 Figure 8-6: Small page translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

1 0C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

0111231

Page Index

Physical Address

12

8

1

Open Access - Preliminary

Memory Management Unit

8-13ARM810 Data Sheet
ARM DDI 0081E

8.10 Translating Large Page References
Figure 8-7: Large page Ttanslation illustrates the complete translation sequence for
a 64 KB Large Page. Note that since the upper four bits of the Page Index and low-
order four bits of the Page Table index overlap, each Page Table Entry for a Large Page
must be duplicated 16 times (in consecutive memory locations) in the Page Table.

 Figure 8-7: Large page Ttanslation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

0 1C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

031

Page Index

Physical Address

12

8

1516

1516

1516

1

Open Access - Preliminary

Memory Management Unit

8-14 ARM810 Data Sheet
ARM DDI 0081E

8.11 Cacheable and Bufferable Status of Memory Regions
For first level translation table descriptor for each Section, and the second level
translation table descriptor for each Large Page, and each Small Page contain two
bits—the C-bit and the B-bit—which specify whether the memory in that Section or
Page will be cached or buffered, and whether it will be cached with Write-Through or
Write-Back behaviour.†

In addition the cache and write buffer behaviour is controlled by the cache enable bit
(C-bit) and write buffer enable bit (W-bit) in the CP15 Control Register.

To differentiate the two C bits, we shall add the subscript “tt” to the translation table bits
giving us Ctt and Btt, and the subscript “cr” to the control register bits giving us Ccr and
Wcr.

The Cache and Write Buffer Configuration is determined by the values of Ctt, Btt, Ccr,
Wcr as shown in Table 8-5: Cache and write buffer configuration .

Note † Write-Back caches are also known as Copy-Back caches.
“AND” means bitwise AND function.

Ctt AND Ccr Btt AND Wcr Cache, Writebuffer & External Abort Operation

0 0 Non-Cached, Non-Buffered (NCNB)
• Reads and Writes are not cached.
• Writes are not buffered.
• Reads and writes may be externally aborted.*

0 1 Non-Cached Buffered (NCB)
• Reads and Writes are not cached.
• Writes are buffered.
• Reads may be externally aborted.
• Writes cannot be externally aborted.

1 0 Cached, Write-Through Mode. (WT)
• Reads which hit in the cache read the data from the

cache and do not perform an external access.
• Reads which miss in the cache cause line fills which

may be externally aborted.
• All writes go off chip and are buffered.
• Writes which hit in the cache update the cache.
• Writes cannot be externally aborted.

 Table 8-5: Cache and write buffer configuration

Open Access - Preliminary

Memory Management Unit

8-15ARM810 Data Sheet
ARM DDI 0081E

Note that the Control Register C bit (Ccr) being zero disables all lookups in the cache,
while the Translation table Register C bit (Ctt) being zero only stops new data being
loaded into the cache. With Ccr = 1 and Ctt = 0 the cache will still be searched on every
access to check whether the cache contains an entry for the data.

1 1 Cached, Write-Back Mode. (WB)
• Reads which hit in the cache read the data from the

cache and do not perform an external access.
• Reads which miss in the cache cause line fills which

may be externally aborted.
• Writes which miss in the cache go off-chip and are

buffered.
• Writes which hit in the cache update the cache and

mark the entry as dirty, and do not cause an external
access.

• Cache write-backs are buffered.
• Writes (Cache Write-Misses & Cache Write-Backs)

cannot be externally aborted.

Ctt AND Ccr Btt AND Wcr Cache, Writebuffer & External Abort Operation

 Table 8-5: Cache and write buffer configuration (Continued)

Open Access - Preliminary

Memory Management Unit

8-16 ARM810 Data Sheet
ARM DDI 0081E

8.12 MMU Faults and CPU Aborts
The MMU generates six types of faults:

Alignment Fault

Translation Fault

Domain Fault

Permission Fault

Terminal Fault

Vector Fault

In addition, an external abort may be raised on external data access.

The access control mechanisms of the MMU detect the conditions that produce these
faults. If a fault is detected as the result of a memory access, the MMU will abort the
access and signal the fault condition to the CPU. The MMU is also capable of retaining
status and address information about the abort. The CPU recognises two types of
abort: data aborts and prefetch aborts, and these are treated differently by the MMU.
See 8.13 Fault Address and Fault Status Registers (FAR and FSR) .

If the MMU detects an access violation, it will do so before the external memory access
takes place, and it will therefore inhibit the access. External aborts will not necessarily
inhibit the external access, as described in the section on external aborts.

Open Access - Preliminary

Memory Management Unit

8-17ARM810 Data Sheet
ARM DDI 0081E

8.13 Fault Address and Fault Status Registers (FAR and FSR)
Aborts resulting from data accesses (data aborts) are acted upon by the CPU
immediately, and the MMU places an encoded 4 bit value FS[3:0], along with the 4 bit
encoded Domain number, in the Fault Status Register (FSR). In addition, the virtual
processor address associated with the data abort is latched into the Fault Address
Register (FAR). If an access violation simultaneously generates more than one source
of abort, they are encoded in the priority given in Table 8-6: Priority Encoding of
Fault Status on page 8-17.

CPU instructions on the other hand are prefetched, so a prefetch abort simply flags
the instruction as it enters the instruction pipeline. Only when (and if) the instruction is
executed does it cause an abort; an abort is not acted upon if the instruction is not
used (i.e. it is branched around). Because instruction prefetch aborts may or may not
be acted upon, the MMU status information is not preserved for the resulting CPU
abort; for a prefetch abort, the MMU does not update the FSR or FAR.

The sections that follow describe the various access permissions and controls
supported by the MMU and detail how these are interpreted to generate faults.

Notes 1 Alignment faults may write either 0b0001 or 0b0011 into FS[3:0].
2 Invalid values in Domain[3:0] occur because the fault is raised before a valid

domain field has been selected.

Source Priority Domain[3:0] FAR

highest priority

Terminal Exception 0b0010 invalid VA of start of cache line
being written-back

Vector Exception 0b0000 invalid VA of access causing abort

Alignment 0b00x1 invalid VA of access causing abort

External Abort on Translation First level
Second level

0b1100
0b1110

invalid
valid

VA of access causing abort

Translation Section
Page

0b0101
0b0111

invalid
valid

VA of access causing abort

Domain Section
Page

0b1001
0b1011

valid
valid

VA of access causing abort

Permission Section
Page

0b1101
0b1111

valid
valid

VA of access causing abort

External Abort on linefetch Section
Page

0b0100
0b0110

valid
valid

VA of start of cache line
being loaded

External Abort on non-linefetch Section
Page

0b1000
0b1010

valid
valid

VA of access causing abort

lowest priority

 Table 8-6: Priority Encoding of Fault Status

Open Access - Preliminary

Memory Management Unit

8-18 ARM810 Data Sheet
ARM DDI 0081E

3 Any abort masked by the priority encoding may be regenerated by fixing the
primary abort and restarting the instruction.

4 The FS[3:0] encoding for Vector Exception breaks from the pattern that
FS[0]==0 indicates an external abort.

Open Access - Preliminary

Memory Management Unit

8-19ARM810 Data Sheet
ARM DDI 0081E

8.14 Domain Access Control
MMU accesses are primarily controlled via domains. There are 16 domains, and each
has a 2-bit field to define it. Two basic kinds of users are supported: Clients and
Managers. Clients use a domain; Managers control the behaviour of the domain. The
domains are defined in the Domain Access Control Register. Figure 8-8: Domain
Access Control Register format on page 8-19 illustrates how the 32 bits of the
register are allocated to define the sixteen 2-bit domains.

 Figure 8-8: Domain Access Control Register format

Table 8-7: Interpreting access bits in Domain Access Control Register defines
how the bits within each domain are interpreted to specify the access permissions.

012345678910111213141516171819202122232425262728293031

0123456789101112131415

Value Meaning Notes

00 No Access Any access will generate a Domain Fault.

01 Client Accesses are checked against the access permission bits in the Section or Page
descriptor.

10 Reserved Reserved. Currently behaves like the no access mode.

11 Manager Accesses are NOT checked against the access Permission bits so a Permission
fault cannot be generated.

 Table 8-7: Interpreting access bits in Domain Access Control Register

Open Access - Preliminary

Memory Management Unit

8-20 ARM810 Data Sheet
ARM DDI 0081E

8.15 Fault Checking Sequence
The sequence by which the MMU checks for access faults is slightly different for
Sections and Pages. The figure below illustrates the sequence for both types of
accesses. The sections and figures that follow describe the conditions that generate
each of the faults.

 Figure 8-9: Sequence for checking faults

violation

no access(00)
reserved(10)

Virtual Address

Check Address Alignment

get Level One Descriptor

Section Page

misaligned Alignment
Fault

invalid
Section

Translation
Fault

get Page
Table Entry

check Domain Status

invalid
Page

Translation
Fault

no access(00) Page
Domain

Fault
reserved(10)

Section
Domain

Fault

Section Page

client(01)client(01)

manager(01)

Check Access
Permissions

Check Access
Permissions

Physical Address

Section
Permission

Fault
violation

sub-Page
Permission

Fault

Check Vector Exception 26 bit data
access to vecs

Vector
Fault

Open Access - Preliminary

Memory Management Unit

8-21ARM810 Data Sheet
ARM DDI 0081E

8.15.1 Terminal fault
A terminal fault indicates a system software error in the maintenance of the translation
tables in main memory when using the Instruction-Data-Cache in Write-Back mode. It
is indicated in theFault Address Register and Fault Status Register to aid debugging
system software.

A terminal fault is indicated when a cache-write-back fails to translate the virtual
address of the cache line to be written-back into a physical address because the
associated translation table walk was aborted by the memory system or returned an
invalid Level One or Level Two descriptor [A descriptor is invalid if bits[1:0] have the
value “00” or “11”].

System Software must ensure that the cache contains no dirty-data for a page or
section before changing the virtual-to-physical mapping of that page or section or
disabling the virtual-to-physical mapping of that page or section. A Terminal Fault
indicates that system software has failed to do this. When a terminal fault occurs, the
data to be written-back from the cache to main memory is irrecoverably lost. A terminal
fault is therefore not a reversible fault.

8.15.2 Vector fault
A Vector fault is generated by the MMU if the processor attempts a load or store data
access to an address in the range &00000000 and &0000001F inclusive when
operating in a 26-bit Mode. Vector faults are never generated for instruction fetches.
Vector faults are generated regardless of the setting of the MMU enable bit (M-bit) in
the System Control Coprocessor Control Register.

8.15.3 Alignment fault
If Alignment Fault is enabled (bit 1 in Control Register set), the MMU will generate an
alignment fault on any data word access the address of which is not word-aligned
irrespective of whether the MMU is enabled or not; in other words, if either of virtual
address bits [1:0] are not 0. Alignment fault will not be generated on any instruction
fetch, nor on any byte access. Note that if the access generates an alignment fault, the
access sequence will abort without reference to further permission checks.

8.15.4 Translation fault
There are two types of translation fault: section and page.

1 A Section Translation Fault is generated if the Level One descriptor is marked
as invalid. This happens if bits[1:0] of the descriptor are both 0 or both 1.

2 A Page Translation Fault is generated if the Page Table Entry is marked as
invalid. This happens if bits[1:0] of the entry are both 0 or both 1.

8.15.5 Domain fault
There are two types of domain fault: section and page. In both cases the Level One
descriptor holds the 4-bit Domain field which selects one of the sixteen 2-bit domains
in the Domain Access Control Register. The two bits of the specified domain are then
checked for access permissions as detailed in Table 8-3: Interpreting access
permission (AP) Bits on page 8-9. In the case of a section, the domain is checked
once the Level One descriptor is returned, and in the case of a page, the domain is
checked once the Page Table Entry is returned.

If the specified access is either No Access (00) or Reserved (10) then either a Section
Domain Fault or Page Domain Fault occurs.

Open Access - Preliminary

Memory Management Unit

8-22 ARM810 Data Sheet
ARM DDI 0081E

8.15.6 Permission fault
There are two types of permission fault: section and sub-page. Permission fault is checked at
the same time as Domain fault. If the 2-bit domain field returns client (01), then the permission
access check is invoked as follows:

section:

If the Level One descriptor defines a section-mapped access, then the AP bits of the descriptor
define whether or not the access is allowed according to Table 8-3: Interpreting access
permission (AP) Bits on page 8-9. Their interpretation is dependent upon the setting of the S
bit (Control Register bit 8). If the access is not allowed, then a Section Permission fault is
generated.

sub-page:

If the Level One descriptor defines a page-mapped access, then the Level Two descriptor
specifies four access permission fields (ap3..ap0) each corresponding to one quarter of the
page. Hence for small pages, ap3 is selected by the top 1KB of the page, and ap0 is selected
by the bottom 1KB of the page; for large pages, ap3 is selected by the top 16KB of the page,
and ap0 is selected by the bottom 16KB of the page. The selected AP bits are then interpreted
in exactly the same way as for a section (see Table 8-3: Interpreting access permission (AP)
Bits on page 8-9), the only difference being that the fault generated is a sub-page permission
fault.

Open Access - Preliminary

Memory Management Unit

8-23ARM810 Data Sheet
ARM DDI 0081E

8.16 External Aborts
In addition to the MMU-generated aborts, ARM810 has an external abort pin which may be
used to flag an error on an external memory access. However, not all accesses can be aborted
in this way, so this pin must be used with great care. The following section describes the
restrictions.

The following accesses may be aborted and restarted safely. In the case of a read-lock-write
sequence in which the read aborts, the write will not happen.

Reads

Unbuffered writes

Level One descriptor fetch

Level Two descriptor fetch

read-lock-write sequence

Cacheable reads (linefetches)

A linefetch may be safely aborted on any word in the transfer. If an abort occurs during the
linefetch then the cache line will be invalidated. If the abort happens on a word that has been
requested by the ARM8, the instruction will be aborted, otherwise the cache line will be
invalidated but program flow will not be interrupted. The line is therefore invalidated under all
circumstances.

Buffered writes.

Buffered writes cannot be externally aborted. Therefore, the system should be configured such
that it does not do buffered writes to areas of memory which are capable of flagging an external
abort.

Writes to Cacheable Regions

Writes to cacheable regions and cache write-backs are performed as buffered writes and
cannot be externally aborted. The system design should ensure that writes to cacheable
regions are not externally aborted.

Open Access - Preliminary

Memory Management Unit

8-24 ARM810 Data Sheet
ARM DDI 0081E

8.17 Interaction of the MMU, IDC and Write Buffer
The MMU, IDC, WB and Branch prediction may be enabled/disabled independently. However,
in order for the write buffer or the cache to be enabled the MMU must also be enabled. Also,
Branch prediction must never be enabled when the cache is disabled. There are no hardware
interlocks on these restrictions, so invalid combinations will cause undefined results.

The following procedures must be observed.

 To enable the MMU:

1 Program the Translation Table Base and Domain Access Control Registers
2 Program Level 1 and Level 2 page tables as required
3 Enable the MMU by setting bit 0 in the Control Register.

MMU IDC WB

off off off

on off off

on on off

on off on

on on on

 Table 8-8: Valid MMU, IDC and Write Buffer combinations

Open Access - Preliminary

Memory Management Unit

8-25ARM810 Data Sheet
ARM DDI 0081E

Note Care must be taken if the translated address differs from the untranslated address as
severalinstructions following the enabling of the MMU mayhave been fetched using “flat
translation” and enabling the MMU may be considered as a branch with delayed execution. A
similar situation occurs when the MMU is disabled. Consider the following code sequence:

MOV R1, #0x1

MCR 15,0,R1,0,0 ; Enable MMU

Fetch Flat

Fetch Flat

Fetch Translated

To disable the MMU:

1 Disable Branch prediction, if it is enabled, by using the code sequence given in 6.3.3
Turning off Branch Prediction .

2 Disable the WB by clearing bit 3 in the Control Register.
3 Disable the IDC by clearing bit 2 in the Control Register.
4 Disable the MMU by clearing bit 0 in the Control Register.

Note that if the MMU is enabled, then disabled and subsequently re-enabled the
contents of the TLB will have been preserved. If these are now invalid, the TLB should
be flushed before re-enabling the MMU.

Disabling of all three functions described in steps 2, 3 and 4 may be done simultaneously.

8.18 Effect of Reset
See 3.7 Reset on page 3-12.

Open Access - Preliminary

Memory Management Unit

8-26 ARM810 Data Sheet
ARM DDI 0081E

Open Access - Preliminary

9-1ARM810 Data Sheet
ARM DDI 0081E

This chapter describes the Write Buffer (WB).

9.1 Cacheable and Bufferable bits 9-3
9.2 Write Buffer Operation 9-4

Write Buffer9

Open Access - Preliminary

Write Buffer

9-2 ARM810 Data Sheet
ARM DDI 0081E

The ARM810 write buffer is provided to improve system performance. It can buffer up
to 8 words of data, and 4 independent addresses. It may be enabled or disabled via
the W bit (bit 3) in the ARM810 Control Register and the buffer is disabled and flushed
on reset. The operation of the write buffer is further controlled by the C and B bits which
are stored in the Memory Management Page Tables. For this reason, in order to use
the write buffer, the MMU must be enabled. The two functions may however be
enabled simultaneously, with a single write to the Control Register. For a write to use
the write buffer, both the W bit in the Control Register and either the C or B bit in the
corresponding page table must be set.

It is not possible to abort buffered writes externally; the abort pin will be ignored. Areas
of memory which may generate aborts should be marked as unbufferable in the MMU
page tables.

Open Access - Preliminary

Write Buffer

9-3ARM810 Data Sheet
ARM DDI 0081E

9.1 Cacheable and Bufferable bits
These bits controls whether a write operation may or may not use the write buffer.
Typically main memory will be cacheable and bufferable and I/O space unbufferable.
The C and B bits can be configured for both pages and sections. This is decribed in
section 8.11 Cacheable and Bufferable Status of Memory Regions on page 8-147.

Open Access - Preliminary

Write Buffer

9-4 ARM810 Data Sheet
ARM DDI 0081E

9.2 Write Buffer Operation

9.2.1 Bufferable write
If the write buffer is enabled and the processor performs a write to a bufferable area, the data
is placed in the write buffer at FCLK (MCLK if running with fastbus extension) speeds and the
CPU continues execution. The write buffer then performs the external write in parallel. If
however the write buffer is full (either because there are already 8 words of data in the buffer,
or because there is no slot for the new address) then the processor is stalled until there is
sufficient space in the buffer.

9.2.2 Unbufferable writes
If the write buffer is disabled or the CPU performs a write to an unbufferable area, the processor
is stalled until the write buffer empties and the unbufferable write completes externally, which
may require synchronisation and several external clock cycles.

9.2.3 Read-lock-write
The write phase of a read-lock-write sequence is treated as an Unbuffered write, even if it is
marked as buffered.

Open Access - Preliminary

Write Buffer

9-5ARM810 Data Sheet
ARM DDI 0081E

Note: A single write requires one address slot and one data slot in the write buffer; a sequential write
of n words requires one address slot and n data slots. The total of 8 data slots in the buffer may
be used as required. So for instance there could be 3 non-sequential writes and one sequential
write of 5 words in the buffer, and the processor could continue as normal: a 5th write or a 6th
word in the 4th write would stall the processor until the first write had completed.

9.2.4 To enable the Write Buffer
To enable the write buffer, ensure the MMU is enabled by setting bit 0 in the Control Register,
then enable the write buffer by setting bit 3 in the Control Register. The MMU and write buffer
may be enabled simultaneously with a single write to the Control Register.

9.2.5 To disable the Write Buffer
To disable the write buffer, clear bit 3 in the Control Register.

Note Any writes already in the write buffer will complete normally.

Open Access - Preliminary

Write Buffer

9-6 ARM810 Data Sheet
ARM DDI 0081E

Open Access - Preliminary

10-1ARM810 Data Sheet
ARM DDI 0081E

This chapter describes use of coprocessors with the ARM810.

10.1 Overview 10-2

Coprocessors10

Open Access - Preliminary

Coprocessors

10-2 ARM810 Data Sheet
ARM DDI 0081E

10.1 Overview
The ARM810 has no external coprocessor interface, so it is not possible to add
external coprocessors to ARM810.

ARM810 has an internal coprocessor, called the System Control Coprocessor
designated as coprocessor number 15. The System Control Coprocessor is used to
control the configuration of the device, including the endianness setting, enabling of
the Cache, MMU, Writebuffer, Branch Prediction, and the control of the Cache and
MMU.

The System Control coprocessor is documented in detail in Chapter 5, Configuration
and in the chapters on those parts of the ARM810 it controls: Chapter 7, Instruction
and Data Cache (IDC) , Chapter 8, Memory Management Unit ,Chapter 9, Write
Buffer , Chapter 6, The Prefetch Unit .

Open Access - Preliminary

11-1ARM810 Data Sheet
ARM DDI 0081E

This chapter describes the bus interface clocking:

11.1 The Bus Clock 11-3
11.2 The Processor Clock 11-4
11.3 Generation of the Fast Clock 11-6
11.4 Forced Processor Clock from the Bus Clock 11-9
11.5 Low Power Idle and Sleep 11-10

ARM810 Clocking11

Open Access - Preliminary

ARM810 Clocking

11-2 ARM810 Data Sheet
ARM DDI 0081E

The ARM810 uses two clock signals:

• bus clock
• fast clock

These clocks are derived from external inputs to the processor with configurations
defined by external pins and the on-chip programmable registers.

The fast clock can be selected from three sources:

• bus clock
• on-chip PLL
• external reference clock

When the fast clock is sourced from the bus clock, operation is equivalent to
ARM710a's Fastbus mode. When the fast clock is sourced from the external reference
clock, the operation is equivalent to ARM710a's Standard bus mode.

The following sections explain how these clocks are made and describe their expected
usage. In particular, note the addition of a clock multiplier (PLL) in this design.

Open Access - Preliminary

ARM810 Clocking

11-3ARM810 Data Sheet
ARM DDI 0081E

11.1 The Bus Clock
The external bus clock is used to cycle the external bus interface. This clock is sourced
directly from external input pins of the device. See Figure 11-1: Generating the
external bus interface clock .

 Figure 11-1: Generating the external bus interface clock

The bus clock is gated with nWait to provide the external bus clock itself. This allows
external bus cycles to be extended if system timing requires it (see Figure 12-9: Use
of the nWAIT pin to stop ARM810 for 1 MCLK cycle on page 12-16 for timing
details).

11.1.1 External input clock: MCLK or PCLK
To provide for synchronous memory systems (eg. SDRAM, SSRAM) that use a clock
which is essentially an inverted bus clock (returning data on the rising clock edge), you
can choose to use the PCLK rather than the MCLK external input to avoid having to
invert the clock externally. If you use PCLK , MCLK must be tied HIGH. If you use
MCLK , PCLK must be tied LOW. New system designs should use PCLK for future
compatibility. MCLK is provided for backwards compatibility. In future references in this
document, the term bus clock refers to MCLK or PCLK depending on which is being
used.

External
Bus
Interface

Bus
ClockMCLK

PCLK

nWAIT

Open Access - Preliminary

ARM810 Clocking

11-4 ARM810 Data Sheet
ARM DDI 0081E

11.2 The Processor Clock
The processor clock is used to cycle the internals of the processor, see Figure 11-2:
Generating the Processor Clock . The processor clock can be sourced by one of two
input clock signals to the synchroniser:

• bus clock
• fast clock

 Figure 11-2: Generating the Processor Clock

When the processor is not performing external memory accesses, the fast clock (F)
input to the synchroniser is the source for the processor clock (See 11.3 Generation
of the Fast Clock on page 11-6 for details of generating the fast clock). When external
memory accesses are being made by the processor, the bus clock (M) input to the
synchroniser is the source for the processor clock (See 11.1 The Bus Clock on page
11-3 for details of generating the bus clock). Which of the sources to use is determined
by the internal request for external bus signal during normal operation (see 11.4
Forced Processor Clock from the Bus Clock on page 11-9 for details during
RESET). When changing between F and M inputs, the synchroniser may perform
re-synchronisation.

Note When a buffered write is made, the processor clock continues to run from the fast clock
source at highest performance.

11.2.1 Synchronous/asynchronous operation
The state of the S bit (from Coprocessor 15, Register 15, bit 1) determines whether
any synchronisation occurs between the bus clock (M) and fast clock (F) inputs to the
synchroniser when the processor clock is changed from one to the other before and
after external memory access cycles.

CPU,
CACHE,
MMUProcessor

reset

Internal request for

F

nWAIT

Bus Clock

Fast Clock

external bus

Clock

S

M SYNC

Open Access - Preliminary

ARM810 Clocking

11-5ARM810 Data Sheet
ARM DDI 0081E

Synchronous operation

If the S bit is HIGH, there must be a tightly defined relationship between the bus clock
and the fast clock (if this relationship is not obeyed, then the S bit should be set LOW).
With the S bit HIGH, the Synchroniser will not perform any synchronisation, and the
bus clock may only make transitions on the falling edge of the fast clock. Please refer
to Section 15.2 for the timing requirements.

Asynchronous Operation

If the S bit is LOW, there is no defined relationship between the bus clock and the fast
clock - they are asynchronous. The synchroniser introduces a synchronisation penalty
whenever the internal core clock switches between the two input clocks (bus clock (M)
and fast clock (F)). This penalty is symmetric, and varies between nothing and a whole
period of the clock to which the core is synchronising. For example, when changing
from the fast clock to the bus clock, the average synchronisation penalty is half a bus
clock period, and when changing from the bus clock to the fast clock, it is half a fast
clock period.

Open Access - Preliminary

ARM810 Clocking

11-6 ARM810 Data Sheet
ARM DDI 0081E

11.3 Generation of the Fast Clock
The fast clock input to the synchroniser can be selected from three sources. These are
all configured internally using Coprocessor 15, Register 15, bits 2 and 3: F0 and F1.
See 11.5 Low Power Idle and Sleep on page 11-10 further details. During RESET,
the bus clock is selected as the initial source for the fast clock.

11.3.1 Fast clock from the bus clock (Fastbus mode)
This configuration (F0=0, F1=0) makes the bus clock the source for the fast clock. This
guarantees a defined relationship between the fast clock and the bus clock, and so
synchronous operation (S=1) can be used for improved performance. This
configuration is selected at RESET.

 Figure 11-3: Fast clock the same as the bus clock

MCLK
PCLK

F0 = 0
F1 = 0
S = 1

Fast Clock == Bus Clock

Open Access - Preliminary

ARM810 Clocking

11-7ARM810 Data Sheet
ARM DDI 0081E

11.3.2 Fast clock from the output of the PLL
This configuration (F0=1, F1=1) makes the output of the PLL clock multiplier the
source for the fast clock (see Figure 11-4: Fast clock from the output of the PLL)
When operating in this configuration, the S bit must be set LOW for asynchronous
operation (S=0).

 Figure 11-4: Fast clock from the output of the PLL

The PLL and input clock prescaler can be used to produce a fast clock frequency in
the range 45MHz to 100MHz (or 22.5MHz to 50MHz if PLLRANGE is HIGH) from a
REFCLK frequency of 1MHz to 80MHz.

The REFCLK prescaler divides the REFCLK frequency by 1, 2, 4 or 8 to produce
PLLCLKIn under control of REFCLKCFG as shown in Table 11-1: Prescaler divide
ratios .

PLLCLKIn must be in the range 1MHz to 10MHz.

PLLCLKIn

PLLRANGE

F0 = 1
F1 = 1
S = 0

PLLCFG[6:0]

PLLSLEEP

PLL

Fast
Clock

PLL locked
(CP15, r15, bit4)

REFCLK Prescaler
÷ 1, 2, 4, 8

REFCLK

REFCLKCFG[1:0]

REFCLKCFG Divide ratio

0 0 1

0 1 2

1 0 4

1 1 8

 Table 11-1: Prescaler divide ratios

Open Access - Preliminary

ARM810 Clocking

11-8 ARM810 Data Sheet
ARM DDI 0081E

The fast clock output frequency is defined according to the following equation:

fFastClock = fPLLCLKIn * M/2

where:

fFastClock is the frequency of the fast clock output

fPLLCLKIn is the frequency of PLLCLKIn , which is the frequency of REFCLK divided by
1, 2, 4 or 8.

M is the value of the PLLCFG bus if interpreted as normal unsigned binary
reporesentation. M is defined for the range M = 5, 6, 7 ..., 127. Values of M less
than 5 are invalid.

The output frequency range of the PLL must reside between certain limits. These limits are
determined by the PLLRANGE pin shown in Table 11-2: Output frequency range .

11.3.3 Fast clock direct (bypassing the PLL)
This configuration (F0=1, F1=0) provides a means of directly driving the fast clock from an
external pin. This configuration may operate synchronously or asynchronously depending on
how the reference clock (REFCLK) is generated. Figure 11-5: Fast clock direct shows this
configuration.

 Figure 11-5: Fast clock direct

PLLRANGE Min Fast Clock (MHz) Max Fast Clock (MHz)

LOW 45 100

HIGH 22.5 50

 Table 11-2: Output frequency range

REFCLK and Bus Clock
are Asynchronous

F0 = 1
F1 = 0
S = 0

REFCLK and Bus Clock
are Synchronous

F0 = 1
F1 = 0
S = 1

REFCLK
Fast Clock

Open Access - Preliminary

ARM810 Clocking

11-9ARM810 Data Sheet
ARM DDI 0081E

11.4 Forced Processor Clock from the Bus Clock
Coprocessor 15, Register 15, bit 0 (the D bit) is used to override the internal request for external
bus signal to the synchroniser (see Figure 11-2: Generating the Processor Clock on page
11-4) and force the processor clock to be sourced from the bus clock. At RESET, the D bit is set
LOW, and so the processor clock is sourced from the bus clock until this bit is changed. Once
the fast clock source has been configured, and is sufficiently stable, the D bit should be set
HIGH so the processor runs from the fast clock when not accessing the external bus.

Open Access - Preliminary

ARM810 Clocking

11-10 ARM810 Data Sheet
ARM DDI 0081E

11.5 Low Power Idle and Sleep
The D bit (see Section 11.4) can be employed to provide a clean transition to allow low-power
idle or sleep mode. As the ARM810 is a fully static processor, stopping its clock when it has no
work to do provides an ideal way to minimise power consumption and provide a fast start-up
when it needs to operate again - all state is just frozen and does not need to be restored.

The easiest means of stopping the processor (and associated system) is to stop the bus clock.
To allow the system to be stopped with the processor state at a precisely defined point in
program execution, the processor clock must be sourced from the bus clock and the bus clock
stopped. This can be achieved by setting the D bit LOW (writing 0 to Coprocessor 15, Register
15, bit 0) and then stopping the bus clock externally.

If the fast clock is being generated by the PLL clock multiplier and the PLL is left running while
the bus clock is stopped, after restarting the bus clock, the D bit can be set HIGH and the
processor clock sourced from an already locked fast clock PLL source. This could be
implemented in the system for a fast wake-up-from-sleep interrupt response (though more
power is consumed if the PLL is running continuously whilst the rest of the system is stopped).

The PLL itself can be placed in Sleep mode (using the PLLSLEEP external input), where it
stops running and therefore consuming power. On wake-up, the PLL will take time to lock, and
the system must take this into account - more details to be advised in future.

