


Colophon
BCM2711 ARM Peripherals, based in large part on the earlier BCM2835 ARM Peripherals documentation.

© 2012 Broadcom Europe Ltd., 2020 Raspberry Pi (Trading) Ltd.

All rights reserved.

build-date: 2020-10-16

build-version: githash: bfc2f1f-clean

Table 1. Release

History
Release Date Description

1 05/Feb/2020 First release.

2 24/Sep/2020 Corrected GPIO base address. Updated styling.

3 16/Oct/2020 First public release.

The latest release can be found at http://datasheets.raspberrypi.org/bcm2711/bcm2711-peripherals.pdf.

Legal Disclaimer Notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM

TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI (TRADING) LTD (“RPTL) "AS IS" AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE

LAW IN NO EVENT SHALL RPTL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

RPTL reserves the right to make any enhancements, improvements, corrections or any other modifications to the

RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for

their selection and use of the RESOURCES and any application of the products described in them. User agrees to

indemnify and hold RPTL harmless against all liabilities, costs, damages or other losses arising out of their use of the

RESOURCES.

RPTL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use

of the RESOURCES is prohibited. No licence is granted to any other RPTL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous

environments requiring fail safe performance, such as in the operation pf nuclear facilities, aircraft navigation or

communication systems, air traffic control, weapons systems or safety-critical applications (including life support

systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or

severe physical or environmental damage (“High Risk Activities”). RPTL specifically disclaims any express or implied

warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High

Risk Activities.

Raspberry Pi products are provided subject to RPTL’s Standard Terms. RPTL’s provision of the RESOURCES does not

expand or otherwise modify RPTL’s Standard Terms including but not limited to the disclaimers and warranties expressed

in them.

BCM2711 ARM Peripherals

Legal Disclaimer Notice 1

http://datasheets.raspberrypi.org/bcm2711/bcm2711-peripherals.pdf
https://www.raspberrypi.org/terms-conditions-sale/
https://www.raspberrypi.org/terms-conditions-sale/


Table of Contents
Colophon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Legal Disclaimer Notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

1.2. Address map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

1.2.1. Diagrammatic overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

1.2.2. Full 35-bit address map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

1.2.3. ARM physical addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

1.2.4. Legacy master addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

1.3. Peripheral access precautions for correct memory ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

2. Auxiliaries: UART1, SPI1 & SPI2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

2.1.1. AUX registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

2.2. Mini UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

2.2.1. Mini UART implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

2.2.2. Mini UART register details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

2.3. Universal SPI Master (2x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

2.3.1. SPI implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

2.3.2. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

2.3.3. Long bit streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

2.3.4. SPI register details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

3. BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

3.2. Register View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

3.3. 10-Bit Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

3.3.1. Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

3.3.2. Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

4. DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

4.2. DMA Controller Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

4.2.1. DMA Channel Register Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

4.2.1.1. Control Block Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

4.2.1.2. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

4.2.1.3. Peripheral DREQ Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

4.3. AXI Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

4.4. Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

4.5. DMA LITE Engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

4.6. DMA4 Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

5. General Purpose I/O (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

5.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

5.2. Register View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

5.3. Alternative Function Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76

5.4. General Purpose GPIO Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80

5.4.1. Operating Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81

5.4.2. Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81

6. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

6.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

6.2. Interrupt sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

6.2.1. ARM Core n interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

6.2.2. ARM_LOCAL interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

6.2.3. ARMC interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

6.2.4. VideoCore interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

6.2.5. ETH_PCIe interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

6.3. GIC-400 interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

6.4. Legacy interrupt controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88

BCM2711 ARM Peripherals

Table of Contents 2



6.5. Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89

6.5.1. GIC-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

6.5.2. ARM_LOCAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

6.5.3. ARMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97

7. PCM / I2S Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110

7.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110

7.2. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110

7.3. Typical Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

7.4. Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112

7.5. Software Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

7.5.1. Operating in Polled mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

7.5.2. Operating in Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

7.5.3. DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

7.6. Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

7.7. PDM Input Mode Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114

7.8. GRAY Code Input Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114

7.9. PCM Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

8. Pulse Width Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125

8.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125

8.2. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125

8.3. PWM Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125

8.4. Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126

8.5. Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126

8.6. Control and Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127

9. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131

9.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131

9.2. SPI Master Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131

9.2.1. Standard mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131

9.2.2. Bidirectional mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132

9.3. LoSSI mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132

9.3.1. Command write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133

9.3.2. Parameter write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133

9.3.3. Byte read commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133

9.3.4. 24-bit read command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133

9.3.5. 32-bit read command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133

9.4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133

9.5. SPI Register Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134

9.6. Software Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138

9.6.1. Polled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138

9.6.2. Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138

9.6.3. DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138

9.6.4. Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139

10. System Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140

10.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140

10.2. System Timer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140

11. UART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

11.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

11.2. Variations from the 16C650 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

11.3. Primary UART Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143

11.4. UART Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144

11.5. Register View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144

12. Timer (ARM side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157

12.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157

12.2. Timer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157

13. ARM Mailboxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161

13.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161

13.2. Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161

BCM2711 ARM Peripherals

Table of Contents 3



Chapter 1. Introduction

1.1. Overview

BCM2711 contains the following peripherals which may safely be accessed by the ARM:

• Timers

• Interrupt controller

• GPIO

• USB

• PCM / I2S

• DMA controller

• I2C masters

• SPI masters

• PWM

• UARTs

The purpose of this datasheet is to provide documentation for these peripherals in sufficient detail to allow a developer to

port an operating system to BCM2711. Not all of these peripherals have been fully documented yet.

There are a number of peripherals which are intended to be controlled by the GPU. These are omitted from this datasheet.

Accessing these peripherals from the ARM is not recommended.

1.2. Address map

1.2.1. Diagrammatic overview

The BCM2711 has two main addressing schemes: a "Full" 35-bit address bus and a 32-bit "Legacy Master" view as seen

by the peripherals (except for "large address" masters). There’s also a "Low Peripherals" mode which modifies the ARM’s

view of the peripheral addresses. Figure 1 shows how these address maps inter-relate. Note that the relative sizes of the

address blocks in the diagram are definitely not to scale! (The PCIe address range covers 8GB, but the Main peripherals

address range only covers 64MB.)

BCM2711 ARM Peripherals

1.1. Overview 4



SDRAM
(for the VC)

SDRAM
(for the ARM)

L2 Cached
(allocating)

Reserved

Main peripherals

L2 Cached
(non-allocating)

ARM Local
peripherals

Reserved

PCIe

0x0_0000_0000

0x7_FFFF_FFFF

SDRAM
(for the ARM)

0x0_4000_0000

0x4_0000_0000

0x4_4000_0000

0x4_7C00_0000

0x4_8000_0000

0x4_C000_0000

0x5_0000_0000

0x6_0000_0000

SDRAM
(for the ARM)

L2 Cached
(allocating)

Reserved

L2 Cached
(non-allocating)

Reserved

PCIe

SDRAM
(for the VC)

0x0_0000_0000

0x7_FFFF_FFFF

SDRAM
(for the ARM)

0x0_4000_0000

0x4_0000_0000

0x4_4000_0000

0x4_8000_0000

0x4_C000_0000

0x6_0000_0000

ARM Local
peripherals

Main peripherals

SDRAM
(for the ARM)

0x0_FC00_0000

0x0_FF80_0000

0x1_0000_0000

L2 Cached
(allocating)

Reserved

Main peripherals

L2 Cached
(non-allocating)

SDRAM
(for the ARM)

0x0000_0000

0x4000_0000

0x7c00_0000

0x8000_0000

0xC000_0000

0xFFFF_FFFF
Paging

registers

Full 35-bit Address MapLegacy Master view
of Address Map

ARM view of the Address Map
in “Low Peripheral” mode

Size of VC SDRAM
determined by
config.txt

Figure 1. BCM2711

Address Maps

Addresses in ARM Linux are:

1. Issued as virtual addresses by the ARM core, then

2. Mapped into a physical address by the ARM MMU, then

3. Used to select the appropriate peripheral or location in RAM

1.2.2. Full 35-bit address map

The full 35-bit address map is shown in Figure 1. This is seen by both "large address" masters (e.g. the DMA4 engines)

and the ARM CPU.

It has two L2 cache aliases (one allocating, one non-allocating) which cache (only) the first 1GB of SDRAM.

1.2.3. ARM physical addresses

Physical addresses start at 0x0_0000_0000 for RAM.

• The ARM section of the RAM starts at 0x0_0000_0000 and extends up to the size of installed SDRAM.

• The VideoCore section of the RAM is mapped in from 0x0_4000_0000 downwards. The size of the VideoCore RAM is

determined by a setting in config.txt - refer to raspberrypi.org documentation for further details.

The VideoCore maps the ARM physical address space directly to the bus address space seen by VideoCore. The bus

addresses for RAM are set up to map onto the uncached bus address range on the VideoCore starting at 0x0_0000_0000.

BCM2711 ARM Peripherals

1.2. Address map 5

https://www.raspberrypi.org/documentation/configuration/config-txt/memory.md


 NOTE

BCM2711 provides a 1MB system L2 cache, which is used primarily by the GPU. Accesses to memory are routed

either via or around the L2 cache depending on the address range being used.

When running in 32-bit mode, the ARM uses LPAE mode to enable it to access the full 32GB address space.

Physical addresses range from 0x4_7C00_0000 to 0x4_7FFF_FFFF for Main peripherals, and from 0x4_C000_0000 to

0x4_FFFF_FFFF for ARM Local peripherals.

If the VPU enables "Low Peripheral" mode then the ARM (only) has Main peripherals available from 0x0_FC00_0000 to

0x0_FF7F_FFFF and ARM Local peripherals available from 0x0_FF80_0000 to 0x0_FFFF_FFFF.

1.2.4. Legacy master addresses

The peripheral addresses specified in this document are legacy master addresses. Software accessing peripherals

using the DMA engines must use 32-bit legacy master addresses. The Main peripherals are available from 0x7C00_0000

to 0x7FFF_FFFF. Behind the scenes, the VideoCore transparently translates these addresses to the 35-bit 0x4_7nnn_nnnn

addresses.

So a peripheral described in this document as being at legacy address 0x7Enn_nnnn is available in the 35-bit address

space at 0x4_7Enn_nnnn, and visible to the ARM at 0x0_FEnn_nnnn if Low Peripheral mode is enabled.

Software accessing RAM using the DMA engines must use legacy addresses (between 0xC000_0000 and 0xFFFF_FFFF).

This accesses a 1GB window within the full 16GB SDRAM address space. If the DMA engine needs to access RAM above

the first 1GB, this window can be moved using the PAGE or PAGELITE bits - see Chapter 4 for more details. Behind the

scenes, the VideoCore transparently translates these addresses to the 35-bit 0x0_nnnn_nnnn addresses.

Software accessing the VPU L2 cache using the DMA engines must use legacy addresses starting at 0x0000_0000 (for

allocating cache) or 0x8000_0000 (for non-allocating cache). Behind the scenes, the VideoCore transparently translates

these addresses to the corresponding 35-bit 0x4_nnnn_nnnn addresses. These 1GB windows can’t be moved, and are

limited to the first 1GB of SDRAM.

1.3. Peripheral access precautions for correct memory ordering

The BCM2711 system uses an AMBA AXI-compatible interface structure. In order to keep the system complexity low and

data throughput high, the BCM2711 AXI system does not always return read data in-order. The GPU has special logic to

cope with data arriving out-of-order; however the ARM core does not contain such logic. Therefore some precautions

must be taken when using the ARM to access peripherals.

Accesses to the same peripheral will always arrive and return in-order. It is only when switching from one peripheral to

another that data can arrive out-of-order. The simplest way to make sure that data is processed in-order is to place a

memory barrier instruction at critical positions in the code. You should place:

• A memory write barrier before the first write to a peripheral

• A memory read barrier after the last read of a peripheral

It is not required to put a memory barrier instruction after each read or write access. Only at those places in the code

where it is possible that a peripheral read or write may be followed by a read or write of a different peripheral. This is

normally at the entry and exit points of the peripheral service code.

As interrupts can appear anywhere in the code, you should also safeguard those. If an interrupt routine reads from a

peripheral the routine should start with a memory read barrier. If an interrupt routine writes to a peripheral the routine

should end with a memory write barrier.

BCM2711 ARM Peripherals

1.3. Peripheral access precautions for correct memory ordering 6



 NOTE

Normally a processor assumes that if it executes two read operations the data will arrive in order. So a read from

location X followed by a read from location Y should return the data of location X first, followed by the data of location

Y. Data arriving out of order can have disastrous consequences. For example:

a_status = *pointer_to_peripheral_a;
b_status = *pointer_to_peripheral_b;

Without precautions the values ending up in the variables a_status and b_status can be swapped around.

It is theoretically possible for writes to go ‘wrong’ but that is far more difficult to achieve. The AXI system makes sure

the data always arrives in-order at its intended destination. So:

*pointer_to_peripheral_a = value_a;
*pointer_to_peripheral_b = value_b;

will always give the expected result. The only time write data can arrive out-of-order is if two different peripherals are

connected to the same external equipment.

BCM2711 ARM Peripherals

1.3. Peripheral access precautions for correct memory ordering 7



Chapter 2. Auxiliaries: UART1, SPI1 &
SPI2

2.1. Overview

The BCM2711 device has three Auxiliary peripherals: One mini UART (UART1) and two SPI masters (SPI1 & SPI2). These

three peripherals are grouped together as they share the same area in the peripheral register map and they share a

common interrupt. Also all three are controlled by the Auxiliary enable register. The Auxiliary register base address is

0x7e215000.

Table 2. Auxiliary

peripherals Address

Map

Offset Name Description

0x00 AUX_IRQ Auxiliary Interrupt status

0x04 AUX_ENABLES Auxiliary enables

0x40 AUX_MU_IO_REG Mini UART I/O Data

0x44 AUX_MU_IER_REG Mini UART Interrupt Enable

0x48 AUX_MU_IIR_REG Mini UART Interrupt Identify

0x4c AUX_MU_LCR_REG Mini UART Line Control

0x50 AUX_MU_MCR_REG Mini UART Modem Control

0x54 AUX_MU_LSR_REG Mini UART Line Status

0x58 AUX_MU_MSR_REG Mini UART Modem Status

0x5c AUX_MU_SCRATCH Mini UART Scratch

0x60 AUX_MU_CNTL_REG Mini UART Extra Control

0x64 AUX_MU_STAT_REG Mini UART Extra Status

0x68 AUX_MU_BAUD_REG Mini UART Baudrate

0x80 AUX_SPI1_CNTL0_REG SPI 1 Control register 0

0x84 AUX_SPI1_CNTL1_REG SPI 1 Control register 1

0x88 AUX_SPI1_STAT_REG SPI 1 Status

0x8c AUX_SPI1_PEEK_REG SPI 1 Peek

0xa0 AUX_SPI1_IO_REGa SPI 1 Data

0xa4 AUX_SPI1_IO_REGb SPI 1 Data

0xa8 AUX_SPI1_IO_REGc SPI 1 Data

0xac AUX_SPI1_IO_REGd SPI 1 Data

0xb0 AUX_SPI1_TXHOLD_REGa SPI 1 Extended Data

0xb4 AUX_SPI1_TXHOLD_REGb SPI 1 Extended Data

0xb8 AUX_SPI1_TXHOLD_REGc SPI 1 Extended Data

0xbc AUX_SPI1_TXHOLD_REGd SPI 1 Extended Data

0xc0 AUX_SPI2_CNTL0_REG SPI 2 Control register 0

BCM2711 ARM Peripherals

2.1. Overview 8



Offset Name Description

0xc4 AUX_SPI2_CNTL1_REG SPI 2 Control register 1

0xc8 AUX_SPI2_STAT_REG SPI 2 Status

0xcc AUX_SPI2_PEEK_REG SPI 2 Peek

0xe0 AUX_SPI2_IO_REGa SPI 2 Data

0xe4 AUX_SPI2_IO_REGb SPI 2 Data

0xe8 AUX_SPI2_IO_REGc SPI 2 Data

0xec AUX_SPI2_IO_REGd SPI 2 Data

0xf0 AUX_SPI2_TXHOLD_REGa SPI 2 Extended Data

0xf4 AUX_SPI2_TXHOLD_REGb SPI 2 Extended Data

0xf8 AUX_SPI2_TXHOLD_REGc SPI 2 Extended Data

0xfc AUX_SPI2_TXHOLD_REGd SPI 2 Extended Data

2.1.1. AUX registers

There are two Auxiliary registers which control all three devices. One is the interrupt status register, the second is the

Auxiliary enable register. The Auxiliary IRQ status register can help to hierarchically determine the source of an interrupt.

AUX_IRQ Register

Description

The AUX_IRQ register is used to check any pending interrupts which may be asserted by the three Auxiliary sub

blocks.

Table 3. AUX_IRQ

Register
Bits Name Description Type Reset

31:3 Reserved. - - -

2 SPI 2 IRQ If set the SPI 2 module has an interrupt pending. RO 0x0

1 SPI 1 IRQ If set the SPI1 module has an interrupt pending. RO 0x0

0 Mini UART IRQ If set the mini UART has an interrupt pending. RO 0x0

AUX_ENABLES Register

Description

The AUX_ENABLES register is used to enable the three modules: UART1, SPI1, SPI2.

Table 4.

AUX_ENABLES

Register

Bits Name Description Type Reset

31:3 Reserved. - - -

2 SPI2 enable If set the SPI 2 module is enabled.

If clear the SPI 2 module is disabled. That also disables any

SPI 2 module register access

RW 0x0

1 SPI 1 enable If set the SPI 1 module is enabled.

If clear the SPI 1 module is disabled. That also disables any

SPI 1 module register access

RW 0x0

BCM2711 ARM Peripherals

2.1. Overview 9



Bits Name Description Type Reset

0 Mini UART enable If set the mini UART is enabled. The UART will immediately

start receiving data, especially if the UART1_RX line is low.

If clear the mini UART is disabled. That also disables any

mini UART register access

RW 0x0

If the enable bits are clear you will have no access to a peripheral. You can not even read or write the registers!

GPIO pins should be set up first before enabling the UART. The UART core is built to emulate 16550 behaviour. So when it

is enabled any data at the inputs will immediately be received. If the UART1_RX line is low (because the GPIO pins have

not been set-up yet) that will be seen as a start bit and the UART will start receiving 0x00-characters.

Valid stops bits are not required for the UART. (See also Implementation details). Hence any bit status is acceptable as a

stop bit, and is only used so there is a clean timing start for the next bit.

Immediately after a reset, the baudrate register will be zero and the system clock will be 250 MHz. So only 2.5 μseconds

suffice to fill the receive FIFO. The result will be that if the UART is enabled without changing the default configuration, the

FIFO will be full and overflowing in no time flat.

2.2. Mini UART

The mini UART is a secondary low throughput UART intended to be used as a console. It needs to be enabled before it

can be used. It is also recommended that the correct GPIO function mode is selected before enabling the mini UART (see

Chapter 5).

 NOTE

The UART itself has no throughput limitations, in fact it can run up to 32 Mega baud. But doing so requires significant

CPU involvement as it has shallow FIFOs and no DMA support.

The mini UART has the following features:

• 7-bit or 8-bit operation

• 1 start and 1 stop bit

• No parities

• Break generation

• 8 symbols deep FIFOs for receive and transmit

• SW controlled RTS, SW readable CTS

• Auto flow control with programmable FIFO level

• 16550 like registers

• Baudrate derived from system clock

This is a mini UART and it does NOT have the following capabilities:

• Break detection

• Framing errors detection

• Parity bit

• Receive Time-out interrupt

• DCD, DSR, DTR or RI signals

The implemented UART is not a 16650 compatible UART. However as far as possible the first 8 control and status

registers are laid out like a 16550 UART. All 16550 register bits which are not supported can be written but will be ignored

BCM2711 ARM Peripherals

2.2. Mini UART 10



and read back as 0. All control bits for simple UART receive/transmit operations are available.

2.2.1. Mini UART implementation details

The UART1_CTS and UART1_RX inputs are synchronised and will take 2 system clock cycles before they are processed.

The module does not check for any framing errors. After receiving a start bit and 8 (or 7) data bits the receiver waits for

one half-bit time and then starts scanning for the next start bit. The mini UART does not check if the stop bit is high or

wait for the stop bit to appear. As a result of this, a UART1_RX input line which is continuously low (a break condition or an

error in connection or GPIO setup) causes the receiver to continuously receive 0x00 symbols.

The mini UART uses 8-times oversampling. The Baudrate can be calculated from:

If the system clock is 250 MHz and the baud register is zero the baudrate is 31.25 Mega baud. (25 Mbits/sec or 3.125

Mbytes/sec). The lowest baudrate with a 250 MHz system clock is 476 Baud.

When writing to the data register only the LS 8 bits are taken. All other bits are ignored.

When reading from the data register only the LS 8 bits are valid. All other bits are zero.

2.2.2. Mini UART register details

AUX_MU_IO_REG Register

Description

The AUX_MU_IO_REG register is primarily used to write data to and read data from the UART FIFOs.

If the DLAB bit in the line control register is set this register gives access to the LS 8 bits of the baud rate. (Note: there

is easier access to the baud rate register in AUX_MU_BAUD_REG)

Table 5.

AUX_MU_IO_REG

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 LS 8 bits Baudrate

read/write,

DLAB=1

Access to the LS 8 bits of the 16-bit baudrate register.

(Only if bit 7 of the line control register (DLAB bit) is set)

RW 0x00

7:0 Transmit data

write, DLAB=0

Data written is put in the transmit FIFO (Provided it is not

full)

(Only if bit 7 of the line control register (DLAB bit) is clear)

WO 0x00

7:0 Receive data read,

DLAB=0

Data read is taken from the receive FIFO (Provided it is not

empty)

(Only if bit 7 of the line control register (DLAB bit) is clear)

RO 0x00

AUX_MU_IER_REG Register

Description

The AUX_MU_IER_REG register is primarily used to enable interrupts

If the DLAB bit in the line control register is set this register gives access to the MS 8 bits of the baud rate. (Note: there

is easier access to the baud rate register in AUX_MU_BAUD_REG)

Table 6.

AUX_MU_IER_REG

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

BCM2711 ARM Peripherals

2.2. Mini UART 11



Bits Name Description Type Reset

7:0 MS 8 bits

Baudrate

read/write,

DLAB=1

Access to the MS 8 bits of the 16-bit baudrate register.

(Only if bit 7 of the line control register (DLAB bit) is set)

RW 0x00

1 Enable receive

interrupt (DLAB=0)

If this bit is set the interrupt line is asserted whenever the

receive FIFO holds at least 1 byte.

If this bit is clear no receive interrupts are generated.

RW 0x0

0 Enable transmit

interrupt (DLAB=0)

If this bit is set the interrupt line is asserted whenever the

transmit FIFO is empty.

If this bit is clear no transmit interrupts are generated.

RW 0x0

AUX_MU_IIR_REG Register

Description

The AUX_MU_IIR_REG register shows the interrupt status.

It also has two FIFO enable status bits and (when writing) FIFO clear bits.

Table 7.

AUX_MU_IIR_REG

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:6 FIFO enables Both bits always read as 1 as the FIFOs are always enabled RO 0x3

5:4 - Always read as zero RO 0x0

3 - Always read as zero as the mini UART has no timeout

function

RO 0x0

2:1 READ:

   Interrupt ID bits

WRITE:

   FIFO clear bits

On read this register shows the interrupt ID bit

   00 : No interrupts

   01 : Transmit holding register empty

   10 : Receiver holds valid byte

   11 : <Not possible>

On write:

   Writing with bit 1 set will clear the receive FIFO

   Writing with bit 2 set will clear the transmit FIFO

RW 0x0

0 Interrupt pending This bit is clear whenever an interrupt is pending RO 0x1

AUX_MU_LCR_REG Register

Description

The AUX_MU_LCR_REG register controls the line data format and gives access to the baudrate register

Table 8.

AUX_MU_LCR_REG

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7 DLAB access If set the first two Mini UART registers give access to the

Baudrate register. During operation this bit must be

cleared.

RW 0x0

6 Break If set high the UART1_TX line is pulled low continuously. If

held for at least 12 bits times that will indicate a break

condition.

RW 0x0

5:1 Reserved. - - -

BCM2711 ARM Peripherals

2.2. Mini UART 12



Bits Name Description Type Reset

0 Data size If clear the UART works in 7-bit mode

If set the UART works in 8-bit mode

RW 0x0

AUX_MU_MCR_REG Register

Description

The AUX_MU_MCR_REG register controls the 'modem' signals.

Table 9.

AUX_MU_MCR_REG

Register

Bits Name Description Type Reset

31:2 Reserved. - - -

1 RTS If clear the UART1_RTS line is high

If set the UART1_RTS line is low

This bit is ignored if the RTS is used for auto-flow control.

See the Mini UART Extra Control register description)

RW 0x0

0 Reserved. - - -

AUX_MU_LSR_REG Register

Description

The AUX_MU_LSR_REG register shows the data status.

Table 10.

AUX_MU_LSR_REG

Register

Bits Name Description Type Reset

31:7 Reserved. - - -

6 Transmitter idle This bit is set if the transmit FIFO is empty and the

transmitter is idle. (Finished shifting out the last bit).

RO 0x1

5 Transmitter empty This bit is set if the transmit FIFO can accept at least one

byte.

RO 0x0

4:2 Reserved. - - -

1 Receiver Overrun This bit is set if there was a receiver overrun. That is: one or

more characters arrived whilst the receive FIFO was full.

The newly arrived characters have been discarded. This bit

is cleared each time this register is read. To do a non-

destructive read of this overrun bit use the Mini UART Extra

Status register.

RC 0x0

0 Data ready This bit is set if the receive FIFO holds at least 1 symbol. RO 0x0

AUX_MU_MSR_REG Register

Description

The AUX_MU_MSR_REG register shows the 'modem' status.

Table 11.

AUX_MU_MSR_REG

Register

Bits Name Description Type Reset

31:5 Reserved. - - -

4 CTS status This bit is the inverse of the UART1_CTS input. Thus:

If set the UART1_CTS pin is low

If clear the UART1_CTS pin is high

RO 0x1

3:0 Reserved. - - -

BCM2711 ARM Peripherals

2.2. Mini UART 13



AUX_MU_SCRATCH Register

Description

The AUX_MU_SCRATCH is a single byte of temporary storage.

Table 12.

AUX_MU_SCRATCH

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 Scratch A byte of temporary storage RW 0x00

AUX_MU_CNTL_REG Register

Description

The AUX_MU_CNTL_REG provides access to some extra useful and nice features not found on a normal 16550

UART.

Table 13.

AUX_MU_CNTL_REG

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

7 CTS assert level This bit allows one to invert the CTS auto flow operation

polarity.

If set the CTS auto flow assert level is low*

If clear the CTS auto flow assert level is high*

RW 0x0

6 RTS assert level This bit allows one to invert the RTS auto flow operation

polarity.

If set the RTS auto flow assert level is low*

If clear the RTS auto flow assert level is high*

RW 0x0

5:4 RTS AUTO flow

level

These two bits specify at what receiver FIFO level the RTS

line is de-asserted in auto-flow mode.

00 : De-assert RTS when the receive FIFO has 3 empty

spaces left.

01 : De-assert RTS when the receive FIFO has 2 empty

spaces left.

10 : De-assert RTS when the receive FIFO has 1 empty

space left.

11 : De-assert RTS when the receive FIFO has 4 empty

spaces left.

RW 0x0

3 Enable transmit

Auto flow-control

using CTS

If this bit is set the transmitter will stop if the CTS line is de-

asserted.

If this bit is clear the transmitter will ignore the status of the

CTS line

RW 0x0

2 Enable receive

Auto flow-control

using RTS

If this bit is set the RTS line will de-assert if the receive FIFO

reaches its 'auto flow' level. In fact the RTS line will behave

as an RTR (Ready To Receive) line.

If this bit is clear the RTS line is controlled by the

AUX_MU_MCR_REG register bit 1.

RW 0x0

1 Transmitter

enable

If this bit is set the mini UART transmitter is enabled.

If this bit is clear the mini UART transmitter is disabled

RW 0x1

0 Receiver enable If this bit is set the mini UART receiver is enabled.

If this bit is clear the mini UART receiver is disabled

RW 0x1

BCM2711 ARM Peripherals

2.2. Mini UART 14



Receiver enable

If this bit is clear no new symbols will be accepted by the receiver. Any symbols in progress of reception will be

finished.

Transmitter enable

If this bit is clear no new symbols will be sent by the transmitter. Any symbols in progress of transmission will be

finished.

Auto flow control

Automatic flow control can be enabled independent for the receiver and the transmitter.

CTS auto flow control impacts the transmitter only. The transmitter will not send out new symbols when the CTS line is

de-asserted. Any symbols in progress of transmission when the CTS line becomes de-asserted will be finished.

RTS auto flow control impacts the receiver only. In fact the name RTS for the control line is incorrect and should be RTR

(Ready to Receive). The receiver will de-assert the RTS (RTR) line when its receive FIFO has a number of empty spaces

left. Normally 3 empty spaces should be enough.

If looping back a mini UART using full auto flow control the logic is fast enough to allow the RTS auto flow level of '10' (De-

assert RTS when the receive FIFO has 1 empty space left).

Auto flow polarity

To offer full flexibility the polarity of the CTS and RTS (RTR) lines can be programmed. This should allow the mini

UART to interface with any existing hardware flow control available.

AUX_MU_STAT_REG Register

Description

The AUX_MU_STAT_REG provides a lot of useful information about the internal status of the mini UART not found on

a normal 16550 UART.

Table 14.

AUX_MU_STAT_REG

Register

Bits Name Description Type Reset

31:28 Reserved. - - -

27:24 Transmit FIFO fill

level

These bits shows how many symbols are stored in the

transmit FIFO

The value is in the range 0-8

RO 0x0

23:20 Reserved. - - -

19:16 Receive FIFO fill

level

These bits shows how many symbols are stored in the

receive FIFO

The value is in the range 0-8

RO 0x0

15:10 Reserved. - - -

9 Transmitter done This bit is set if the transmitter is idle and the transmit FIFO

is empty.

It is a logic AND of bits 3 and 8

RO 0x1

8 Transmit FIFO is

empty

If this bit is set the transmitter FIFO is empty. Thus it can

accept 8 symbols.

RO 0x1

7 CTS line This bit shows the status of the UART1_CTS line. RO 0x0

6 RTS status This bit shows the status of the UART1_RTS line. RO 0x0

5 Transmit FIFO is

full

This is the inverse of bit 1 RO 0x0

BCM2711 ARM Peripherals

2.2. Mini UART 15



Bits Name Description Type Reset

4 Receiver overrun This bit is set if there was a receiver overrun. That is: one or

more characters arrived whilst the receive FIFO was full.

The newly arrived characters have been discarded. This bit

is cleared each time the AUX_MU_LSR_REG register is read.

RO 0x0

3 Transmitter is idle If this bit is set the transmitter is idle.

If this bit is clear the transmitter is busy.

RO 0x1

2 Receiver is idle If this bit is set the receiver is idle.

If this bit is clear the receiver is busy.

This bit can change unless the receiver is disabled

RO 0x1

1 Space available If this bit is set the mini UART transmitter FIFO can accept

at least one more symbol.

If this bit is clear the mini UART transmitter FIFO is full

RO 0x0

0 Symbol available If this bit is set the mini UART receive FIFO contains at

least 1 symbol

If this bit is clear the mini UART receiver FIFO is empty

RO 0x0

Receiver is idle

This bit is only useful if the receiver is disabled. The normal use is to disable the receiver, then check (or wait) until the

bit is set. Now you can be sure that no new symbols will arrive (e.g. now you can change the baudrate…).

Transmitter is idle

This bit tells if the transmitter is idle. Note that the bit will set only for a short time if the transmit FIFO contains data.

Normally you want to use bit 9: Transmitter done.

RTS status

This bit is useful only in receive Auto flow-control mode as it shows the status of the RTS line.

AUX_MU_BAUD_REG Register

Description

The AUX_MU_BAUD_REG register allows direct access to the 16-bit wide baudrate counter.

Table 15.

AUX_MU_BAUD_REG

Register

Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 Baudrate mini UART baudrate counter RW 0x0000

This is the same register as is accessed using the DLAB bit and the first two registers, but much easier to access.

2.3. Universal SPI Master (2x)

The two universal SPI masters are secondary low throughput SPI interfaces. Like the mini UART the devices need to be

enabled before they can be used.

BCM2711 ARM Peripherals

2.3. Universal SPI Master (2x) 16



 NOTE

Again the SPIs themselves have no throughput limitations, in fact they can run with an SPI clock of 125 MHz. But

doing so requires significant CPU involvement as they have shallow FIFOs and no DMA support.

Each SPI master has the following features:

• Single-beat bit length between 1 and 32 bits

• Single-beat variable bit length between 1 and 24 bits

• Multi-beat infinite bit length

• 3 independent chip selects per master

• 4 entries 32-bit wide transmit and receive FIFOs

• Data out on rising or falling clock edge

• Data in on rising or falling clock edge

• Clock inversion (idle high or idle low)

• Wide clocking range

• Programmable data out hold time

• Shift in/out MS or LS bit first

A major issue with an SPI interface is that there is no SPI standard in any form. Because the SPI interface has been

around for a long time some pseudo-standard rules have appeared mostly when interfacing with memory devices. The

universal SPI master has been developed to work even with the most 'non-standard' SPI devices.

2.3.1. SPI implementation details

The following diagrams shows a typical SPI access cycle. In this case we have 8 SPI clocks.

One bit-time before any clock edge changes the CS_n will go low. This makes sure that the MOSI signal has a full bit-time

of set-up against any changing clock edges.

The operation normally ends after the last clock cycle. Note that at the end there is one half-bit time where the clock does

not change but which still is part of the operation cycle.

There is an option to add a half-bit cycle hold time. This makes sure that any MISO data has at least a full SPI bit-time to

arrive. (Without this hold time, data clocked out of the SPI device on the last clock edge would have only half a bit-time to

arrive).

Lastly there is a guarantee of at least a full bit-time where the SPI chip select is high. A longer CS_n high period can be

programmed for another 1-7 cycles.

The SPI clock frequency is:

BCM2711 ARM Peripherals

2.3. Universal SPI Master (2x) 17



If the system clock is 250 MHz and the speed field is zero the SPI clock frequency is 125 MHz. The practical SPI clock will

be lower as the I/O pads can not transmit or receive signals at such high speed. The lowest SPI clock frequency with a

250 MHz system clock is 30.5 KHz.

The hardware has an option to add hold time to the MOSI signal against the SPI clk. This is again done using the system

clock. So a 250 MHz system clock will add hold times in units of 4 ns. Hold times of 0, 1, 4 and 7 system clock cycles can

be used. (So at 250MHz an additional hold time of 0, 4, 16 and 28 ns can be achieved). The hold time is additional to the

normal output timing as specified in the data sheet.

2.3.2. Interrupts

The SPI block has two interrupts: TX FIFO is empty, SPI is Idle.

TX FIFO is empty

This interrupt will be asserted as soon as the last entry has been read from the transmit FIFO. At that time the

interface will still be busy shifting out that data. This also implies that the receive FIFO will not yet contain the last

received data. It is possible at that time to fill the TX FIFO again and read the receive FIFO entries which have been

received. There is a RX FIFO level field which tells you exactly how many words are in the receive FIFO. In general at

that time the receive FIFO should contain the number of TX items minus one (the last one still being received). Note

that there is no "receive FIFO full" interrupt as the number of entries received can never be more than the number of

entries transmitted.

SPI is Idle

This interrupt will be asserted when the transmit FIFO is empty and the SPI block has finished all actions (including

the CS-high time). By this time the receive FIFO will have received all data as well.

2.3.3. Long bit streams

The SPI module works in bursts of up to 32 bits. Some SPI devices require data which is longer than 32 bits. To do this

the user must make use of the two different data TX addresses: TX data written to one address causes the CS to remain

asserted. TX data written to the other address causes the CS to be de-asserted at the end of the transmit cycle. So in

order to exchange 96 bits you do the following:

Write the first two data words to one address, then write the third word to the other address.

2.3.4. SPI register details

AUX_SPI1_CNTL0_REG, AUX_SPI2_CNTL0_REG Registers

Description

The AUX_SPIx_CNTL0_REG registers control many features of the SPI interfaces.

Table 16.

AUX_SPI1_CNTL0_REG

,

AUX_SPI2_CNTL0_REG

Registers

Bits Name Description Type Reset

31:20 Speed Sets the SPI clock speed. spi_clk_freq =

system_clock_freq/2*(speed+1)

RW 0x000

19:17 Chip Selects The pattern output on the CS pins when active. RW 0x7

16 Post-input mode If set the SPI input works in post-input mode.

For details see text further down

RW 0x0

15 Variable CS If 1 the SPI takes the CS pattern and the data from the TX

FIFO

If 0 the SPI takes the CS pattern from bits 17-19 of this

register

Set this bit only if bit 14 (variable width) is also set

RW 0x0

BCM2711 ARM Peripherals

2.3. Universal SPI Master (2x) 18



Bits Name Description Type Reset

14 Variable width If 1 the SPI takes the shift length and the data from the TX

FIFO

If 0 the SPI takes the shift length from bits 0-5 of this

register

RW 0x0

13:12 DOUT Hold time Controls the extra DOUT hold time in system clock cycles.

00 : No extra hold time

01 : 1 system clock extra hold time

10 : 4 system clocks extra hold time

11 : 7 system clocks extra hold time

RW 0x0

11 Enable Enables the SPI interface. Whilst disabled the FIFOs can

still be written to or read from

This bit should be 1 during normal operation.

RW 0x0

10 In rising If 1 data is clocked in on the rising edge of the SPI clock

If 0 data is clocked in on the falling edge of the SPI clock

RW 0x0

9 Clear FIFOs If 1 the receive and transmit FIFOs are held in reset (and

thus flushed.)

This bit should be 0 during normal operation.

RW 0x0

8 Out rising If 1 data is clocked out on the rising edge of the SPI clock

If 0 data is clocked out on the falling edge of the SPI clock

RW 0x0

7 Invert SPI CLK If 1 the 'idle' clock line state is high.

If 0 the 'idle' clock line state is low.

RW 0x0

6 Shift out MS bit

first

If 1 the data is shifted out starting with the MS bit. (bit 31 or

bit 23)

If 0 the data is shifted out starting with the LS bit. (bit 0)

RW 0x0

5:0 Shift length Specifies the number of bits to shift

This field is ignored when using 'variable width' mode

RW 0x00

Invert SPI CLK

Changing this bit will immediately change the polarity of the SPI clock output. It is recommended to not do this when

the CS is active, as the connected devices will see this as a clock change.

DOUT hold time

Because the interface runs off fast silicon the MOSI hold time against the clock will be very short. This can cause

considerable problems on SPI slaves. To make it easier for the slave to see the data the hold time of the MOSI out

against the SPI clock out is programmable.

Variable width

In this mode the shift length is taken from the transmit FIFO. The transmit data bits 28:24 are used as shift length and

the data bits 23:0 are the actual transmit data. If the option 'shift MS out first' is selected the first bit shifted out will be

bit 23. The receive data will arrive as normal.

BCM2711 ARM Peripherals

2.3. Universal SPI Master (2x) 19



Variable CS

This mode is used together with the variable width mode. In this mode the CS pattern is taken from the transmit FIFO.

The transmit data bits 31:29 are used as CS and the data bits 23:0 are the actual transmit data. This allows the CPU

to write to different SPI devices without having to change the CS bits. However the data length is limited to 24 bits.

Post-input mode

Some rare SPI devices output data on the falling clock edge which then has to be picked up on the next falling clock

edge. There are two problems with this:

1. On the very first falling clock edge there is no valid data arriving

2. After the last clock edge there is one more 'dangling' bit to pick up

The post-input mode is specifically to deal with this sort of data. If the post-input mode bit is set, the data arriving at the

first falling clock edge is ignored. Then after the last falling clock edge the CS remains asserted and after a full bit-time the

last data bit is picked up. The following figure shows this behaviour:

In this mode the CS will go high 1 full SPI clock cycle after the last clock edge. This guarantees a full SPI clock cycle time

for the data to settle and arrive at the MISO input.

AUX_SPI1_CNTL1_REG, AUX_SPI2_CNTL1_REG Registers

Description

The AUX_SPIx_CNTL1_REG registers control more features of the SPI interfaces.

Table 17.

AUX_SPI1_CNTL1_REG

,

AUX_SPI2_CNTL1_REG

Registers

Bits Name Description Type Reset

31:11 Reserved. - - -

10:8 CS high time Additional SPI clock cycles where the CS is high. RW 0x0

7 TX empty IRQ If 1 the interrupt line is high when the transmit FIFO is

empty

RW 0x0

6 Done IRQ If 1 the interrupt line is high when the interface is idle RW 0x0

5:2 Reserved. - - -

1 Shift in MS bit first If 1 the data is shifted in starting with the MS bit. (bit 15)

If 0 the data is shifted in starting with the LS bit. (bit 0)

RW 0x0

0 Keep input If 1 the receiver shift register is NOT cleared. Thus new

data is concatenated to old data.

If 0 the receiver shift register is cleared before each

transaction.

RW 0x0

Keep input

Setting the 'Keep input' bit will prevent the input shift register being cleared between transactions. However the

contents of the shift register is still written to the receive FIFO at the end of each transaction. E.g. if you receive two 8-

bit values 0x81 followed by 0x46 the receive FIFO will contain: 0x0081 in the first entry and 0x8146 in the second

entry. This mode may save CPU time concatenating bits (4 bits followed by 12 bits).

BCM2711 ARM Peripherals

2.3. Universal SPI Master (2x) 20



CS high time

The SPI CS will always be high for at least 1 SPI clock cycle. Some SPI devices need more time to process the data.

This field will set a longer CS-high time. So the actual CS high time is (CS_high_time + 1) (in SPI clock cycles).

AUX_SPI1_STAT_REG, AUX_SPI2_STAT_REG Registers

Description

The AUX_SPIx_STAT_REG registers show the status of the SPI interfaces.

Table 18.

AUX_SPI1_STAT_REG,

AUX_SPI2_STAT_REG

Registers

Bits Name Description Type Reset

31:28 Reserved. - - -

27:24 TX FIFO level The number of data units in the transmit data FIFO RO 0x0

23:20 Reserved. - - -

19:16 RX FIFO level The number of data units in the receive data FIFO. RO 0x0

15:11 Reserved. - - -

10 TX Full If 1 the transmit FIFO is full

If 0 the transmit FIFO can accept at least 1 data unit.

RO 0x0

9 TX Empty If 1 the transmit FIFO is empty

If 0 the transmit FIFO holds at least 1 data unit.

RO 0x0

8 RX Full If 1 the receiver FIFO is full

If 0 the receiver FIFO can accept at least 1 data unit.

RO 0x0

7 RX Empty If 1 the receiver FIFO is empty

If 0 the receiver FIFO holds at least 1 data unit.

RO 0x0

6 Busy Indicates the module is busy transferring data. RO 0x0

5:0 Bit count The number of bits still to be processed. Starts with 'shift-

length' and counts down.

RO 0x00

Busy

This status bit indicates if the module is busy. It will be clear when the TX FIFO is empty and the module has finished

all activities, including waiting the minimum CS high time.

AUX_SPI1_PEEK_REG, AUX_SPI2_PEEK_REG Registers

Description

The AUX_SPIx_PEEK_REG registers show received data of the SPI interfaces.

Table 19.

AUX_SPI1_PEEK_REG,

AUX_SPI2_PEEK_REG

Registers

Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 Data Reads from this address will show the top entry from the

receive FIFO, but the data is not taken from the FIFO. This

provides a means of inspecting the data but not removing

it from the FIFO.

RO 0x0000

AUX_SPI1_IO_REGa, AUX_SPI1_IO_REGb, AUX_SPI1_IO_REGc,

AUX_SPI1_IO_REGd Registers

Description

The AUX_SPI1_IO_REG registers are the primary data port of the SPI 1 interface.

These four addresses all write to the same FIFO.

Writing to any of these addresses causes the SPI CS_n pins to be de-asserted at the end of the access.

BCM2711 ARM Peripherals

2.3. Universal SPI Master (2x) 21



Table 20.

AUX_SPI1_IO_REGa,

AUX_SPI1_IO_REGb,

AUX_SPI1_IO_REGc,

AUX_SPI1_IO_REGd

Registers

Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 Data Writes to this address range end up in the transmit FIFO.

Data is lost when writing whilst the transmit FIFO is full.

Reads from this address will take the top entry from the

receive FIFO. Reading whilst the receive FIFO is empty will

return the last data received.

RW 0x0000

AUX_SPI1_TXHOLD_REGa, AUX_SPI1_TXHOLD_REGb,

AUX_SPI1_TXHOLD_REGc, AUX_SPI1_TXHOLD_REGd Registers

Description

The AUX_SPI1_TXHOLD_REG registers are the extended CS port of the SPI 1 interface.

These four addresses all write to the same FIFO.

Writing to these addresses causes the SPI CS_n pins to remain asserted at the end of the access.

Table 21.

AUX_SPI1_TXHOLD_R

EGa,

AUX_SPI1_TXHOLD_R

EGb,

AUX_SPI1_TXHOLD_R

EGc,

AUX_SPI1_TXHOLD_R

EGd Registers

Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 Data Writes to this address range end up in the transmit FIFO.

Data is lost when writing whilst the transmit FIFO is full.

Reads from this address will take the top entry from the

receive FIFO. Reading whilst the receive FIFO is empty will

return the last data received.

RW 0x0000

AUX_SPI2_IO_REGa, AUX_SPI2_IO_REGb, AUX_SPI2_IO_REGc,

AUX_SPI2_IO_REGd Registers

Description

The AUX_SPI2_IO_REG registers are the primary data port of the SPI 2 interface.

These four addresses all write to the same FIFO.

Writing to any of these addresses causes the SPI CS_n pins to be de-asserted at the end of the access.

Table 22.

AUX_SPI2_IO_REGa,

AUX_SPI2_IO_REGb,

AUX_SPI2_IO_REGc,

AUX_SPI2_IO_REGd

Registers

Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 Data Writes to this address range end up in the transmit FIFO.

Data is lost when writing whilst the transmit FIFO is full.

Reads from this address will take the top entry from the

receive FIFO. Reading whilst the receive FIFO is empty will

return the last data received.

RW 0x0000

AUX_SPI2_TXHOLD_REGa, AUX_SPI2_TXHOLD_REGb,

AUX_SPI2_TXHOLD_REGc, AUX_SPI2_TXHOLD_REGd Registers

Description

The AUX_SPI2_TXHOLD_REG registers are the extended CS port of the SPI 2 interface.

These four addresses all write to the same FIFO.

Writing to these addresses causes the SPI CS_n pins to remain asserted at the end of the access.

BCM2711 ARM Peripherals

2.3. Universal SPI Master (2x) 22



Table 23.

AUX_SPI2_TXHOLD_R

EGa,

AUX_SPI2_TXHOLD_R

EGb,

AUX_SPI2_TXHOLD_R

EGc,

AUX_SPI2_TXHOLD_R

EGd Registers

Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 Data Writes to this address range end up in the transmit FIFO.

Data is lost when writing whilst the transmit FIFO is full.

Reads from this address will take the top entry from the

receive FIFO. Reading whilst the receive FIFO is empty will

return the last data received.

RW 0x0000

BCM2711 ARM Peripherals

2.3. Universal SPI Master (2x) 23



Chapter 3. BSC

3.1. Overview

The Broadcom Serial Control (BSC) controller is a master, fast-mode (400Kb/s) BSC controller. The Broadcom Serial

Control bus is a proprietary bus compliant with the Philips® I2C bus/interface version 2.1 January 2000.

• I2C single master only operation (supports clock stretching wait states)

• Both 7-bit and 10-bit addressing is supported

• Timing completely software controllable via registers

• The BSC controller in the BCM2711 fixes the clock-strectching bug that was present in BCM283x devices

3.2. Register View

The BSC controller has eight memory-mapped registers. All accesses are assumed to be 32-bit. Note that the BSC2 and

BSC7 masters are dedicated for use by the HDMI interfaces and should not be accessed by user programs.

There are eight BSC masters inside BCM2711. The user-accessible register addresses start from

• BSC0: 0x7e205000

• BSC1: 0x7e804000

• BSC3: 0x7e205600

• BSC4: 0x7e205800

• BSC5: 0x7e205a80

• BSC6: 0x7e205c00

The table below shows the addresses of the I2C registers, where the address is an offset from one of the base addresses

listed above.

Table 24. I2C Address

Map
Offset Name Description

0x00 C Control

0x04 S Status

0x08 DLEN Data Length

0x0c A Slave Address

0x10 FIFO Data FIFO

0x14 DIV Clock Divider

0x18 DEL Data Delay

0x1c CLKT Clock Stretch Timeout

C Register

Description

The control register is used to enable interrupts, clear the FIFO, define a read or write operation and start a transfer.

The READ field specifies the type of transfer.

The CLEAR field is used to clear the FIFO. Writing to this field is a one-shot operation which will always read back as

BCM2711 ARM Peripherals

3.1. Overview 24



zero. The CLEAR bit can set at the same time as the start transfer bit, and will result in the FIFO being cleared just

prior to the start of transfer. Note that clearing the FIFO during a transfer will result in the transfer being aborted.

The ST field starts a new BSC transfer. This is a one-shot action, and so the bit will always read back as 0.

The INTD field enables interrupts at the end of a transfer - the DONE condition. The interrupt remains active until the

DONE condition is cleared by writing a 1 to the I2CS.DONE field. Writing a 0 to the INTD field disables interrupts on

DONE.

The INTT field enables interrupts whenever the FIFO is ¼ or more empty and needs writing (i.e. during a write

transfer) - the TXW condition. The interrupt remains active until the TXW condition is cleared by writing sufficient data

to the FIFO to complete the transfer. Writing a 0 to the INTT field disables interrupts on TXW.

The INTR field enables interrupts whenever the FIFO is ¾ or more full and needs reading (i.e. during a read transfer) -

the RXR condition. The interrupt remains active until the RXW condition is cleared by reading sufficient data from the

FIFO. Writing a 0 to the INTR field disables interrupts on RXR.

The I2CEN field enables BSC operations. If this bit is 0 then transfers will not be performed. All register accesses are

still permitted however.

Table 25. C Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15 I2CEN I2C Enable

0 = BSC controller is disabled

1 = BSC controller is enabled

RW 0x0

14:11 Reserved. - - -

10 INTR Interrupt on RX

0 = Don’t generate interrupts on RXR condition.

1 = Generate interrupt while RXR = 1.

RW 0x0

9 INTT Interrupt on TX

0 = Don’t generate interrupts on TXW condition.

1 = Generate interrupt while TXW = 1.

RW 0x0

8 INTD Interrupt on DONE

0 = Don’t generate interrupts on DONE condition.

1 = Generate interrupt while DONE = 1.

RW 0x0

7 ST Start Transfer

0 = No action.

1 = Start a new transfer. One-shot operation. Read back as

0.

W1SC 0x0

6 Reserved. - - -

5:4 CLEAR FIFO Clear

00 = No action.

x1 = Clear FIFO. One-shot operation.

1x = Clear FIFO. One-shot operation.

If CLEAR and ST are both set in the same operation, the

FIFO is cleared before the new frame is started. Read back

as 0.

Note: 2 bits are used to maintain compatibility with the

previous version.

W1SC 0x0

3:1 Reserved. - - -

0 READ Read Transfer

0 = Write Packet Transfer.

1 = Read Packet Transfer.

RW 0x0

S Register

BCM2711 ARM Peripherals

3.2. Register View 25



Description

The status register is used to record activity status, errors and interrupt requests.

The TA field indicates the activity status of the BSC controller. This read-only field returns a 1 when the controller is in

the middle of a transfer and a 0 when idle.

The DONE field is set when the transfer completes. The DONE condition can be used with I2CC.INTD to generate an

interrupt on transfer completion. The DONE field is reset by writing a 1, writing a 0 to the field has no effect.

The read-only TXW bit is set during a write transfer and the FIFO is less than ¼ full and needs writing. Writing

sufficient data (i.e. enough data to either fill the FIFO more than ¼ full or complete the transfer) to the FIFO will clear

the field. When the I2CC.INTT control bit is set, the TXW condition can be used to generate an interrupt to write more

data to the FIFO to complete the current transfer. If the I2C controller runs out of data to send, it will wait for more

data to be written into the FIFO.

The read-only RXR field is set during a read transfer and the FIFO is ¾ or more full and needs reading. Reading

sufficient data to bring the depth below ¾ will clear the field.

When I2CC.INTR control bit is set, the RXR condition can be used to generate an interrupt to read data from the FIFO

before it becomes full. In the event that the FIFO does become full, all I2C operations will stall until data is removed

from the FIFO.

The read-only TXD field is set when the FIFO has space for at least one byte of data.

TXD is clear when the FIFO is full. The TXD field can be used to check that the FIFO can accept data before any is

written. Any writes to a full TX FIFO will be ignored.

The read-only RXD field is set when the FIFO contains at least one byte of data. RXD is cleared when the FIFO

becomes empty. The RXD field can be used to check that the FIFO contains data before reading. Reading from an

empty FIFO will return invalid data.

The read-only TXE field is set when the FIFO is empty. No further data will be transmitted until more data is written to

the FIFO.

The read-only RXF field is set when the FIFO is full. No more clocks will be generated until space is available in the

FIFO to receive more data.

The ERR field is set when the slave fails to acknowledge either its address or a data byte written to it. The ERR field is

reset by writing a 1, writing a 0 to the field has no effect.

The CLKT field is set when the slave holds the SCL signal high for too long (clock stretching). The CLKT field is reset

by writing a 1, writing a 0 to the field has no effect.

Table 26. S Register
Bits Name Description Type Reset

31:10 Reserved. - - -

9 CLKT Clock Stretch Timeout

0 = No errors detected.

1 = Slave has held the SCL signal low (clock stretching) for

longer and that specified in the I2CCLKT register. Cleared

by writing 1 to the field.

W1C 0x0

8 ERR ACK Error

0 = No errors detected.

1 = Slave has not acknowledged its address. Cleared by

writing 1 to the field.

W1C 0x0

7 RXF FIFO Full

0 = FIFO is not full.

1 = FIFO is full. If a read is underway, no further serial data

will be received until data is read from FIFO.

RO 0x0

6 TXE FIFO Empty

0 = FIFO is not empty.

1 = FIFO is empty. If a write is underway, no further serial

data can be transmitted until data is written to the FIFO.

RO 0x1

BCM2711 ARM Peripherals

3.2. Register View 26



Bits Name Description Type Reset

5 RXD FIFO contains Data

0 = FIFO is empty.

1 = FIFO contains at least 1 byte. Cleared by reading

sufficient data from FIFO.

RO 0x0

4 TXD FIFO can accept Data

0 = FIFO is full. The FIFO cannot accept more data.

1 = FIFO has space for at least 1 byte.

RO 0x1

3 RXR FIFO needs Reading (¾ full)

0 = FIFO is less than ¾ full and a read is underway.

1 = FIFO is ¾ or more full and a read is underway. Cleared

by reading sufficient data from the FIFO.

RO 0x0

2 TXW FIFO needs Writing (¼ full)

0 = FIFO is at least ¼ full and a write is underway (or

sufficient data to send).

1 = FIFO is less than ¼ full and a write is underway. Cleared

by writing sufficient data to the FIFO.

RO 0x0

1 DONE Transfer Done

0 = Transfer not completed.

1 = Transfer complete. Cleared by writing 1 to the field.

W1C 0x0

0 TA Transfer Active

0 = Transfer not active.

1 = Transfer active.

RO 0x0

DLEN Register

Description

The data length register defines the number of bytes of data to transmit or receive in the I2C transfer. Reading the

register gives the number of bytes remaining in the current transfer.

The DLEN field specifies the number of bytes to be transmitted/received. Reading the DLEN field when a transfer is in

progress (TA = 1) returns the number of bytes still to be transmitted or received. Reading the DLEN field when the

transfer has just completed (DONE = 1) returns zero as there are no more bytes to transmit or receive.

Finally, reading the DLEN field when TA = 0 and DONE = 0 returns the last value written. The DLEN field can be left

over multiple transfers.

Table 27. DLEN

Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 DLEN Data Length.

Writing to DLEN specifies the number of bytes to be

transmitted/received. Reading from DLEN when TA = 1 or

DONE = 1, returns the number of bytes still to be

transmitted or received.

Reading from DLEN when TA = 0 and DONE = 0, returns the

last DLEN value written. DLEN can be left over multiple

packets.

RW 0x0000

A Register

Description

The slave address register specifies the slave address and cycle type. The address register can be left across multiple

transfers.

The ADDR field specifies the slave address of the I2C device.

BCM2711 ARM Peripherals

3.2. Register View 27



Table 28. A Register
Bits Name Description Type Reset

31:7 Reserved. - - -

6:0 ADDR Slave Address. RW 0x00

FIFO Register

Description

The Data FIFO register is used to access the FIFO. Write cycles to this address place data in the 16-byte FIFO, ready

to transmit on the BSC bus. Read cycles access data received from the bus.

Data writes to a full FIFO will be ignored and data reads from an empty FIFO will result in invalid data. The FIFO can

be cleared using the I2CC.CLEAR field.

The DATA field specifies the data to be transmitted or received.

Table 29. FIFO

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7:0 DATA Writes to the register write transmit data to the FIFO.

Reads from register read received data from the FIFO.

RW 0x00

DIV Register

Description

The clock divider register is used to define the clock speed of the BSC peripheral.

The CDIV field specifies the core clock divider used by the BSC.

Table 30. DIV Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 CDIV Clock Divider

SCL = core_clock / CDIV

Where core_clk is nominally 150 MHz. If CDIV is set to 0,

the divisor is 32768. CDIV is always rounded down to an

even number. The default value should result in a 100 kHz

I2C clock frequency.

RW 0x05dc

DEL Register

Description

The data delay register provides fine control over the sampling/launch point of the data.

The REDL field specifies the number core clocks to wait after the rising edge before sampling the incoming data.

The FEDL field specifies the number core clocks to wait after the falling edge before outputting the next data bit.

Note: Care must be taken in choosing values for FEDL and REDL as it is possible to cause the BSC master to

malfunction by setting values of CDIV/2 or greater. Therefore the delay values should always be set to less than

CDIV/2.

BCM2711 ARM Peripherals

3.2. Register View 28



Table 31. DEL Register
Bits Name Description Type Reset

31:16 FEDL Falling Edge Delay

Number of core clock cycles to wait after the falling edge

of SCL before outputting next bit of data.

RW 0x0030

15:0 REDL Rising Edge Delay

Number of core clock cycles to wait after the rising edge of

SCL before reading the next bit of data.

RW 0x0030

CLKT Register

Description

The clock stretch timeout register provides a timeout on how long the master waits for the slave to stretch the clock

before deciding that the slave has hung.

The TOUT field specifies the number I2C SCL clocks to wait after releasing SCL high and finding that the SCL is still

low before deciding that the slave is not responding and moving the I2C machine forward. When a timeout occurs,

the I2CS.CLKT bit is set.

Writing 0x0 to TOUT will result in the Clock Stretch Timeout being disabled.

Table 32. CLKT

Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 TOUT Clock Stretch Timeout Value

Number of SCL clock cycles to wait after the rising edge of

SCL before deciding that the slave is not responding.

RW 0x0040

3.3. 10-Bit Addressing

10-bit addressing is an extension to the standard 7-bit addressing mode. This section describes in detail how to

read/write using 10-bit addressing with this I2C controller.

10-bit addressing is compatible with, and can be combined with, 7-bit addressing. Using 10 bits for addressing exploits

the reserved combination 1111 0xx for the first byte following a START (S) or REPEATED START (Sr) condition.

The 10-bit slave address is formed from the first two bytes following a S or Sr condition.

The first seven bits of the first byte are the combination 11110XX of which the last two bits (XX) are the two most

significant bits of the 10-bit address. The eighth bit of the first byte is the R/W bit. If the R/W bit is ‘0’ (write) then the

following byte contains the remaining 8 bits of the 10-bit address. If the R/W bit is ‘1’ then the next byte contains data

transmitted from the slave to the master.

3.3.1. Writing

Figure 2. Write to a

slave with 10-bit

address

Figure 2 shows a write to a slave with a 10-bit address, to perform this using the controller one must do the following:

Assuming we are in the ‘stop’ state: (and the FIFO is empty)

BCM2711 ARM Peripherals

3.3. 10-Bit Addressing 29



1. Write the number of data bytes to written (plus one) to the I2CDLEN register

2. Write ‘XXXXXXXX’ to the FIFO where ‘XXXXXXXX’ are the least 8 significant bits of the 10-bit slave address

3. Write other data to be transmitted to the FIFO

4. Write ‘11110XX’ to Slave Address Register where ‘XX’ are the two most significant bits of the 10-bit address

5. Set I2CC.READ = 0 and I2CC.ST = 1, this will start a write transfer

3.3.2. Reading

Figure 3. Read from

slave with 10-bit

address

Figure 3 shows how a read from a slave with a 10-bit address is performed. The following procedure shows how to

perform a read using the controller:

1. Write 1 to the I2CDLEN register

2. Write ‘XXXXXXXX’ to the FIFO where ‘XXXXXXXX’ are the least 8 significant bits of the 10-bit slave address

3. Write ‘11110XX’ to the Slave Address Register where ‘XX’ are the two most significant bits of the 10-bit address

4. Set I2CC.READ = 0 and I2CC.ST = 1, this will start a write transfer

5. Poll the I2CS.TA bit, waiting for the transfer to start

6. Write the number of data bytes to read to the I2CDLEN register

7. Set I2CC.READ = 1 and I2CC.ST = 1, this will send the repeat start bit, the slave address and the R/W bit (which is

‘1’), initiating the read

BCM2711 ARM Peripherals

3.3. 10-Bit Addressing 30



Chapter 4. DMA Controller

4.1. Overview

The majority of hardware pipelines and peripherals within the BCM2711 are bus masters, enabling them to efficiently

satisfy their own data requirements. This reduces the requirements of the DMA controller to block-to-block memory

transfers and supporting some of the simpler peripherals. In addition, the DMA controller provides a read-only prefetch

mode to allow data to be brought into the L2 cache in anticipation of its later use.

Note that the DMA controller is directly connected to the peripherals. Therefore the DMA controller must be set-up to use

the Legacy Master addresses of the peripherals.

The BCM2711 DMA Controller provides a total of 16 DMA channels. Four of these are DMA Lite channels (with reduced

performance and features), and four of them are DMA4 channels (with increased performance and a wider address

range). Each channel operates independently from the others and is internally arbitrated onto one of the three system

busses. This means that the amount of bandwidth that a DMA channel may consume can be controlled by the arbiter

settings (although these are not publicly exposed).

Each DMA channel operates by loading a Control Block (CB) data structure from memory into internal registers. The

Control Block defines the required DMA operation. Each Control Block can point to a further Control Block to be loaded

and executed once the operation described in the current Control Block has completed. In this way a linked list of Control

Blocks can be constructed in order to execute a sequence of DMA operations without software intervention.

The DMA supports AXI read bursts to ensure efficient external SDRAM use. The DMA Control Block contains a burst

parameter which indicates the required burst size of certain memory transfers. In general the DMA doesn’t do write

bursts, although wide writes will be done in 2 beat bursts if possible.

Memory-to-Peripheral transfers can be paced by a Data Request (DREQ) signal which is generated by the peripheral. The

DREQ signal is level sensitive and controls the DMA by gating its AXI bus requests.

A peripheral can also provide a Panic signal alongside the DREQ to indicate that there is an imminent danger of FIFO

underflow or overflow or similar critical situation. The Panic is used to select the AXI apriority level which is then passed

out onto the AXI bus so that it can be used to influence arbitration in the rest of the system.

The allocation of peripherals to DMA channels is programmable.

The DMA can deal with byte aligned transfers and will minimise bus traffic by buffering and packing misaligned accesses.

Each DMA channel can be fully disabled via a top level power register to save power.

4.2. DMA Controller Registers

The DMA Controller is comprised of several identical DMA Channels depending upon the required configuration. Each

individual DMA channel has an identical register map (although LITE channels have fewer registers and DMA4 channels

have more registers).

DMA Channel 0 is located at the address of 0x7e007000, Channel 1 at 0x7e007100, Channel 2 at 0x7e007200 and so on.

Thus adjacent DMA Channels are offset by 0x100.

DMA Channel 15 however, is physically removed from the other DMA Channels and so has a different address base of

0x7ee05000. DMA Channel 15 is exclusively used by the VPU.

Table 33. DMA

Controller Register

Address Map

Base Address DMA Channel

DMA0_BASE + 0x000 DMA Channel 0 Register Set

DMA0_BASE + 0x100 DMA Channel 1 Register Set

BCM2711 ARM Peripherals

4.1. Overview 31



Base Address DMA Channel

DMA0_BASE + 0x200 DMA Channel 2 Register Set

DMA0_BASE + 0x300 DMA Channel 3 Register Set

DMA0_BASE + 0x400 DMA Channel 4 Register Set

DMA0_BASE + 0x500 DMA Channel 5 Register Set

DMA0_BASE + 0x600 DMA Channel 6 Register Set

DMA0_BASE + 0x700 DMA Channel 7 Register Set

DMA0_BASE + 0x800 DMA Channel 8 Register Set

DMA0_BASE + 0x900 DMA Channel 9 Register Set

DMA0_BASE + 0xa00 DMA Channel 10 Register Set

DMA0_BASE + 0xb00 DMA Channel 11 Register Set

DMA0_BASE + 0xc00 DMA Channel 12 Register Set

DMA0_BASE + 0xd00 DMA Channel 13 Register Set

DMA0_BASE + 0xe00 DMA Channel 14 Register Set

DMA15_BASE + 0x000 DMA Channel 15 Register Set

4.2.1. DMA Channel Register Address Map

Each DMA channel of a particular type has an identical register map, only the base address of each channel is different.

There is a global enable register at the top of the Address map that can disable each DMA for powersaving.

Only three registers in each channel’s register set are directly writeable (CS, CONBLK_AD and DEBUG). The other registers

(TI, SOURCE_AD, DEST_AD, TXFR_LEN, STRIDE & NEXTCONBK) are automatically loaded from a Control Block data

structure held in external memory.

4.2.1.1. Control Block Data Structure

Control Blocks (CB) are 8 words (256 bits) in length and must start at a 256-bit aligned address. The format of the

different CB data structures in memory, are shown below.

Each 32-bit word of the Control Block is automatically loaded into the corresponding 32-bit DMA Control Block register at

the start of a DMA transfer. The descriptions of these registers also define the corresponding bit locations in the CB data

structure in memory.

Table 34. DMA Control

Block Definition
32-bit Word

Offset

Description Associated Read-Only Register

0 Transfer Information TI

1 Source Address SOURCE_AD

2 Destination Address DEST_AD

3 Transfer Length TXFR_LEN

4 2D Mode Stride STRIDE

5 Next Control Block Address NEXTCONBK

6-7 Reserved – set to zero. N/A

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 32



Table 35. DMA Lite

Control Block

Definition

32-bit Word

Offset

Description Associated Read-Only Register

0 Transfer Information TI

1 Source Address SOURCE_AD

2 Destination Address DEST_AD

3 Transfer Length TXFR_LEN

4 Reserved – set to zero. N/A

5 Next Control Block Address NEXTCONBK

6-7 Reserved – set to zero. N/A

Table 36. DMA4

Control Block

Definition

32-bit Word

Offset

Description Associated Read-Only Register

0 Transfer Information TI

1 Source Address SRC

2 Source Information SRCI

3 Destination Address DEST

4 Destination Information DESTI

5 Transfer Length LEN

6 Next Control Block Address NEXT_CB

7 Reserved – set to zero. N/A

The DMA is started by writing the address of a CB structure into the CONBLK_AD register (or the CB register in the DMA4

channels) and then setting the ACTIVE bit. The DMA will fetch the CB from the address set in the SCB_ADDR field of the

CONBLK_AD register (or the ADDR field of the CB register in the DMA4 channels) and it will load it into the read-only

registers described below. It will then begin a DMA transfer according to the information in the CB.

When it has completed the current DMA transfer (length => 0) the DMA will update the CONBLK_AD register with the

contents of the NEXTCONBK register (or the NEXT_CB register in the DMA4 channels), fetch a new CB from that address,

and start the whole procedure once again.

The DMA will stop (and clear the ACTIVE bit) when it has completed a DMA transfer and the NEXTCONBK register is set to

0x0000_0000. It will load this value into the CONBLK_AD register and then stop.

Most of the Control Block registers cannot be written to directly as they are loaded automatically from memory. They can

be read to provide status information, and to indicate the progress of the current DMA transfer. The value loaded into the

NEXTCONBK / NEXT_CB register can be overwritten so that the linked list of Control Block data structures can be

dynamically altered. However it is only safe to do this when the DMA is paused.

4.2.1.2. Register Map

Table 37. DMA

Controller Register

Map

Offset Name Description

0x000 0_CS DMA Channel 0 Control and Status

0x004 0_CONBLK_AD DMA Channel 0 Control Block Address

0x008 0_TI DMA Channel 0 CB Word 0

(Transfer Information)

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 33



Offset Name Description

0x00c 0_SOURCE_AD DMA Channel 0 CB Word 1

(Source Address)

0x010 0_DEST_AD DMA Channel 0 CB Word 2

(Destination Address)

0x014 0_TXFR_LEN DMA Channel 0 CB Word 3

(Transfer Length)

0x018 0_STRIDE DMA Channel 0 CB Word 4

(2D Stride)

0x01c 0_NEXTCONBK DMA Channel 0 CB Word 5

(Next CB Address)

0x020 0_DEBUG DMA Channel 0 Debug

0x100 1_CS DMA Channel 1 Control and Status

0x104 1_CONBLK_AD DMA Channel 1 Control Block Address

0x108 1_TI DMA Channel 1 CB Word 0

(Transfer Information)

0x10c 1_SOURCE_AD DMA Channel 1 CB Word 1

(Source Address)

0x110 1_DEST_AD DMA Channel 1 CB Word 2

(Destination Address)

0x114 1_TXFR_LEN DMA Channel 1 CB Word 3

(Transfer Length)

0x118 1_STRIDE DMA Channel 1 CB Word 4

(2D Stride)

0x11c 1_NEXTCONBK DMA Channel 1 CB Word 5

(Next CB Address)

0x120 1_DEBUG DMA Channel 1 Debug

0x200 2_CS DMA Channel 2 Control and Status

0x204 2_CONBLK_AD DMA Channel 2 Control Block Address

0x208 2_TI DMA Channel 2 CB Word 0

(Transfer Information)

0x20c 2_SOURCE_AD DMA Channel 2 CB Word 1

(Source Address)

0x210 2_DEST_AD DMA Channel 2 CB Word 2

(Destination Address)

0x214 2_TXFR_LEN DMA Channel 2 CB Word 3

(Transfer Length)

0x218 2_STRIDE DMA Channel 2 CB Word 4

(2D Stride)

0x21c 2_NEXTCONBK DMA Channel 2 CB Word 5

(Next CB Address)

0x220 2_DEBUG DMA Channel 2 Debug

0x300 3_CS DMA Channel 3 Control and Status

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 34



Offset Name Description

0x304 3_CONBLK_AD DMA Channel 3 Control Block Address

0x308 3_TI DMA Channel 3 CB Word 0

(Transfer Information)

0x30c 3_SOURCE_AD DMA Channel 3 CB Word 1

(Source Address)

0x310 3_DEST_AD DMA Channel 3 CB Word 2

(Destination Address)

0x314 3_TXFR_LEN DMA Channel 3 CB Word 3

(Transfer Length)

0x318 3_STRIDE DMA Channel 3 CB Word 4

(2D Stride)

0x31c 3_NEXTCONBK DMA Channel 3 CB Word 5

(Next CB Address)

0x320 3_DEBUG DMA Channel 0 Debug

0x400 4_CS DMA Channel 4 Control and Status

0x404 4_CONBLK_AD DMA Channel 4 Control Block Address

0x408 4_TI DMA Channel 4 CB Word 0

(Transfer Information)

0x40c 4_SOURCE_AD DMA Channel 4 CB Word 1

(Source Address)

0x410 4_DEST_AD DMA Channel 4 CB Word 2

(Destination Address)

0x414 4_TXFR_LEN DMA Channel 4 CB Word 3

(Transfer Length)

0x418 4_STRIDE DMA Channel 4 CB Word 4

(2D Stride)

0x41c 4_NEXTCONBK DMA Channel 4 CB Word 5

(Next CB Address)

0x420 4_DEBUG DMA Channel 0 Debug

0x500 5_CS DMA Channel 5 Control and Status

0x504 5_CONBLK_AD DMA Channel 5 Control Block Address

0x508 5_TI DMA Channel 5 CB Word 0

(Transfer Information)

0x50c 5_SOURCE_AD DMA Channel 5 CB Word 1

(Source Address)

0x510 5_DEST_AD DMA Channel 5 CB Word 2

(Destination Address)

0x514 5_TXFR_LEN DMA Channel 5 CB Word 3

(Transfer Length)

0x518 5_STRIDE DMA Channel 5 CB Word 4

(2D Stride)

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 35



Offset Name Description

0x51c 5_NEXTCONBK DMA Channel 5 CB Word 5

(Next CB Address)

0x520 5_DEBUG DMA Channel 5 Debug

0x600 6_CS DMA Channel 6 Control and Status

0x604 6_CONBLK_AD DMA Channel 6 Control Block Address

0x608 6_TI DMA Channel 6 CB Word 0

(Transfer Information)

0x60c 6_SOURCE_AD DMA Channel 6 CB Word 1

(Source Address)

0x610 6_DEST_AD DMA Channel 6 CB Word 2

(Destination Address)

0x614 6_TXFR_LEN DMA Channel 6 CB Word 3

(Transfer Length)

0x618 6_STRIDE DMA Channel 6 CB Word 4

(2D Stride)

0x61c 6_NEXTCONBK DMA Channel 6 CB Word 5

(Next CB Address)

0x620 6_DEBUG DMA Channel 6 Debug

0x700 7_CS DMA Lite Channel 7 Control and Status

0x704 7_CONBLK_AD DMA Lite Channel 7 Control Block Address

0x708 7_TI DMA Lite Channel 7 CB Word 0

(Transfer Information)

0x70c 7_SOURCE_AD DMA Lite Channel 7 CB Word 1

(Source Address)

0x710 7_DEST_AD DMA Lite Channel 7 CB Word 2

(Destination Address)

0x714 7_TXFR_LEN DMA Lite Channel 7 CB Word 3

(Transfer Length)

0x71c 7_NEXTCONBK DMA Lite Channel 7 CB Word 5

(Next CB Address)

0x720 7_DEBUG DMA Lite Channel 7 Debug

0x800 8_CS DMA Lite Channel 8 Control and Status

0x804 8_CONBLK_AD DMA Lite Channel 8 Control Block Address

0x808 8_TI DMA Lite Channel 8 CB Word 0

(Transfer Information)

0x80c 8_SOURCE_AD DMA Lite Channel 8 CB Word 1

(Source Address)

0x810 8_DEST_AD DMA Lite Channel 8 CB Word 2

(Destination Address)

0x814 8_TXFR_LEN DMA Lite Channel 8 CB Word 3

(Transfer Length)

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 36



Offset Name Description

0x81c 8_NEXTCONBK DMA Lite Channel 8 CB Word 5

(Next CB Address)

0x820 8_DEBUG DMA Lite Channel 8 Debug

0x900 9_CS DMA Lite Channel 9 Control and Status

0x904 9_CONBLK_AD DMA Lite Channel 9 Control Block Address

0x908 9_TI DMA Lite Channel 9 CB Word 0

(Transfer Information)

0x90c 9_SOURCE_AD DMA Lite Channel 9 CB Word 1

(Source Address)

0x910 9_DEST_AD DMA Lite Channel 9 CB Word 2

(Destination Address)

0x914 9_TXFR_LEN DMA Lite Channel 9 CB Word 3

(Transfer Length)

0x91c 9_NEXTCONBK DMA Lite Channel 9 CB Word 5

(Next CB Address)

0x920 9_DEBUG DMA Lite Channel 9 Debug

0xa00 10_CS DMA Lite Channel 10 Control and Status

0xa04 10_CONBLK_AD DMA Lite Channel 10 Control Block Address

0xa08 10_TI DMA Lite Channel 10 CB Word 0

(Transfer Information)

0xa0c 10_SOURCE_AD DMA Lite Channel 10 CB Word 1

(Source Address)

0xa10 10_DEST_AD DMA Lite Channel 10 CB Word 2

(Destination Address)

0xa14 10_TXFR_LEN DMA Lite Channel 10 CB Word 3

(Transfer Length)

0xa1c 10_NEXTCONBK DMA Lite Channel 10 CB Word 5

(Next CB Address)

0xa20 10_DEBUG DMA Lite Channel 10 Debug

0xb00 11_CS DMA4 Channel 11 Control and Status

0xb04 11_CB DMA4 Channel 11 Control Block Address

0xb0c 11_DEBUG DMA4 Channel 11 Debug

0xb10 11_TI DMA4 Channel 11 CB Word 0

(Transfer Information)

0xb14 11_SRC DMA4 Channel 11 CB Word 1

(Source Address [31:0])

0xb18 11_SRCI DMA4 Channel 11 CB Word 2

(Source Address [40:32] and Info)

0xb1c 11_DEST DMA4 Channel 11 CB Word 3

(Destination Address[31:0])

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 37



Offset Name Description

0xb20 11_DESTI DMA4 Channel 11 CB Word 4

(Destination Address[40:32] and Info)

0xb24 11_LEN DMA4 Channel 11 CB Word 5

(Transfer Length)

0xb28 11_NEXT_CB DMA4 Channel 11 CB Word 6

(Next CB Address)

0xb2c 11_DEBUG2 DMA4 Channel 11 More Debug

0xc00 12_CS DMA4 Channel 12 Control and Status

0xc04 12_CB DMA4 Channel 12 Control Block Address

0xc0c 12_DEBUG DMA4 Channel 12 Debug

0xc10 12_TI DMA4 Channel 12 CB Word 0

(Transfer Information)

0xc14 12_SRC DMA4 Channel 12 CB Word 1

(Source Address [31:0])

0xc18 12_SRCI DMA4 Channel 12 CB Word 2

(Source Address [40:32] and Info)

0xc1c 12_DEST DMA4 Channel 12 CB Word 3

(Destination Address[31:0])

0xc20 12_DESTI DMA4 Channel 12 CB Word 4

(Destination Address[40:32] and Info)

0xc24 12_LEN DMA4 Channel 12 CB Word 5

(Transfer Length)

0xc28 12_NEXT_CB DMA4 Channel 12 CB Word 6

(Next CB Address)

0xc2c 12_DEBUG2 DMA4 Channel 12 More Debug

0xd00 13_CS DMA4 Channel 13 Control and Status

0xd04 13_CB DMA4 Channel 13 Control Block Address

0xd0c 13_DEBUG DMA4 Channel 13 Debug

0xd10 13_TI DMA4 Channel 13 CB Word 0

(Transfer Information)

0xd14 13_SRC DMA4 Channel 13 CB Word 1

(Source Address [31:0])

0xd18 13_SRCI DMA4 Channel 13 CB Word 2

(Source Address [40:32] and Info)

0xd1c 13_DEST DMA4 Channel 13 CB Word 3

(Destination Address[31:0])

0xd20 13_DESTI DMA4 Channel 13 CB Word 4

(Destination Address[40:32] and Info)

0xd24 13_LEN DMA4 Channel 13 CB Word 5

(Transfer Length)

0xd28 13_NEXT_CB DMA4 Channel 13 CB Word 6

(Next CB Address)

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 38



Offset Name Description

0xd2c 13_DEBUG2 DMA4 Channel 13 More Debug

0xe00 14_CS DMA4 Channel 14 Control and Status

0xe04 14_CB DMA4 Channel 14 Control Block Address

0xe0c 14_DEBUG DMA4 Channel 14 Debug

0xe10 14_TI DMA4 Channel 14 CB Word 0

(Transfer Information)

0xe14 14_SRC DMA4 Channel 14 CB Word 1

(Source Address [31:0])

0xe18 14_SRCI DMA4 Channel 14 CB Word 2

(Source Address [40:32] and Info)

0xe1c 14_DEST DMA4 Channel 14 CB Word 3

(Destination Address[31:0])

0xe20 14_DESTI DMA4 Channel 14 CB Word 4

(Destination Address[40:32] and Info)

0xe24 14_LEN DMA4 Channel 14 CB Word 5

(Transfer Length)

0xe28 14_NEXT_CB DMA4 Channel 14 CB Word 6

(Next CB Address)

0xe2c 14_DEBUG2 DMA4 Channel 14 More Debug

0xfe0 INT_STATUS Interrupt status of each DMA channel

0xff0 ENABLE Global enable bits for each DMA channel

0_CS, 1_CS, …, 9_CS, 10_CS Registers

Description

DMA Control and Status register contains the main control and status bits for this DMA channel.

Table 38. 0_CS, 1_CS,

…, 9_CS, 10_CS

Registers

Bits Name Description Type Reset

31 RESET DMA Channel Reset

Writing a 1 to this bit will reset the DMA. The bit cannot be

read, and will self clear.

W1SC 0x0

30 ABORT Abort DMA

Writing a 1 to this bit will abort the current DMA CB. The

DMA will load the next CB and attempt to continue. The bit

cannot be read, and will self clear.

W1SC 0x0

29 DISDEBUG Disable debug pause signal

When set to 1, the DMA will not stop when the debug pause

signal is asserted.

RW 0x0

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 39



Bits Name Description Type Reset

28 WAIT_FOR_OUTS

TANDING_WRITE

S

Wait for outstanding writes

When set to 1, the DMA will keep a tally of the AXI writes

going out and the write responses coming in. At the very

end of the current DMA transfer it will wait until the last

outstanding write response has been received before

indicating the transfer is complete. Whilst waiting it will

load the next CB address (but will not fetch the CB), clear

the active flag (if the next CB address = zero), and it will

defer setting the END flag or the INT flag until the last

outstanding write response has been received.

In this mode, the DMA will pause if it has more than 13

outstanding writes at any one time.

RW 0x0

27:24 Reserved. - - -

23:20 PANIC_PRIORITY AXI Panic Priority Level

Sets the priority of panicking AXI bus transactions. This

value is used when the panic bit of the selected peripheral

channel is 1.

Zero is the lowest priority.

RW 0x0

19:16 PRIORITY AXI Priority Level

Sets the priority of normal AXI bus transactions. This value

is used when the panic bit of the selected peripheral

channel is zero.

Zero is the lowest priority.

RW 0x0

15:9 Reserved. - - -

8 ERROR DMA Error

Indicates if the DMA has detected an error. The error flags

are available in the debug register, and have to be cleared

by writing to that register.

1 = DMA channel has an error flag set.

0 = DMA channel is OK.

RO 0x0

7 Reserved. - - -

6 WAITING_FOR_OU

TSTANDING_WRI

TES

DMA is Waiting for the Last Write to be Received

Indicates if the DMA is currently waiting for any

outstanding writes to be received, and is not transferring

data.

1 = DMA channel is waiting.

RO 0x0

5 DREQ_STOPS_DM

A

DMA Paused by DREQ State

Indicates if the DMA is currently paused and not

transferring data due to the DREQ being inactive.

1 = DMA channel is paused.

0 = DMA channel is running.

RO 0x0

4 PAUSED DMA Paused State

Indicates if the DMA is currently paused and not

transferring data. This will occur if: the active bit has been

cleared, the DMA is currently executing wait cycles, the

debug_pause signal has been set by the debug block, or the

number of outstanding writes has exceeded the max count.

1 = DMA channel is paused.

0 = DMA channel is running.

RO 0x0

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 40



Bits Name Description Type Reset

3 DREQ DREQ State

Indicates the state of the selected DREQ (Data Request)

signal, i.e. the DREQ selected by the PERMAP field of the

transfer info.

1 = Requesting data. This will only be valid once the DMA

has started and the PERMAP field has been loaded from

the CB. It will remain valid, indicating the selected DREQ

signal, until a new CB is loaded. If PERMAP is set to zero

(un-paced transfer) then this bit will read back as 1.

0 = No data request.

RO 0x0

2 INT Interrupt Status

This is set when the transfer for the CB ends and INTEN is

set to 1. Once set it must be manually cleared down, even if

the next CB has INTEN = 0.

Write 1 to clear.

W1C 0x0

1 END DMA End Flag

Set when the transfer described by the current Control

Block is complete. Write 1 to clear.

W1C 0x0

0 ACTIVE Activate the DMA

This bit enables the DMA. The DMA will start if this bit is set

and the CB_ADDR is non zero. The DMA transfer can be

paused and resumed by clearing, then setting it again.

This bit is automatically cleared at the end of the complete

DMA transfer, i.e. after a NEXTCONBK = 0x0000_0000 has

been loaded.

RW 0x0

0_CONBLK_AD, 1_CONBLK_AD, …, 9_CONBLK_AD, 10_CONBLK_AD Registers

Description

DMA Control Block Address register.

Table 39.

0_CONBLK_AD,

1_CONBLK_AD, …,

9_CONBLK_AD,

10_CONBLK_AD

Registers

Bits Name Description Type Reset

31:0 SCB_ADDR Control Block Address

This tells the DMA where to find a Control Block stored in

memory. When the ACTIVE bit is set and this address is

non zero, the DMA will begin its transfer by loading the

contents of the addressed CB into the relevant DMA

channel registers.

At the end of the transfer this register will be updated with

the ADDR field of the NEXTCONBK Control Block register. If

this field is zero, the DMA will stop. Reading this register

will return the address of the currently active CB (in the

linked list of CBs). The address must be 256-bit aligned, so

the bottom 5 bits of the address must be zero.

RW 0x00000000

0_TI, 1_TI, …, 5_TI, 6_TI Registers

Description

DMA Transfer Information.

Table 40. 0_TI, 1_TI, …,

5_TI, 6_TI Registers
Bits Name Description Type Reset

31:27 Reserved. - - -

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 41



Bits Name Description Type Reset

26 NO_WIDE_BURST

S

Don’t do wide writes as a 2 beat burst

This prevents the DMA from issuing wide writes as 2 beat

AXI bursts. This is an inefficient access mode, so the

default is to use the bursts.

RW 0x0

25:21 WAITS Add Wait Cycles

This slows down the DMA throughput by setting the

number of dummy cycles burnt after each DMA read or

write operation is completed.

A value of 0 means that no wait cycles are to be added.

RW 0x00

20:16 PERMAP Peripheral Mapping

Indicates the peripheral number (1-31) whose ready signal

shall be used to control the rate of the transfers, and whose

panic signals will be output on the DMA AXI bus. Set to 0

for a continuous un-paced transfer.

RW 0x00

15:12 BURST_LENGTH Burst Transfer Length

Indicates the burst length of the DMA transfers. The DMA

will attempt to transfer data as bursts of this number of

words. A value of zero will produce a single transfer. Bursts

are only produced for specific conditions, see main text.

RW 0x0

11 SRC_IGNORE Ignore Reads

1 = Do not perform source reads. In addition, destination

writes will zero all the write strobes. This is used for fast

cache fill operations.

0 = Perform source reads.

RW 0x0

10 SRC_DREQ Control Source Reads with DREQ

1 = The DREQ selected by PERMAP will gate the source

reads.

0 = DREQ has no effect.

RW 0x0

9 SRC_WIDTH Source Transfer Width

1 = Use 128-bit source read width.

0 = Use 32-bit source read width.

RW 0x0

8 SRC_INC Source Address Increment

1 = Source address increments after each read. The

address will increment by 4, if SRC_WIDTH=0 else by 32.

0 = Source address does not change.

RW 0x0

7 DEST_IGNORE Ignore Writes

1 = Do not perform destination writes.

0 = Write data to destination.

RW 0x0

6 DEST_DREQ Control Destination Writes with DREQ

1 = The DREQ selected by PERMAP will gate the

destination writes.

0 = DREQ has no effect.

RW 0x0

5 DEST_WIDTH Destination Transfer Width

1 = Use 128-bit destination write width.

0 = Use 32-bit destination write width.

RW 0x0

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 42



Bits Name Description Type Reset

4 DEST_INC Destination Address Increment

1 = Destination address increments after each write. The

address will increment by 4, if DEST_WIDTH=0 else by 32.

0 = Destination address does not change.

RW 0x0

3 WAIT_RESP Wait for a Write Response

When set this makes the DMA wait until it receives the AXI

write response for each write. This ensures that multiple

writes cannot get stacked in the AXI bus pipeline.

1= Wait for the write response to be received before

proceeding.

0 = Don’t wait; continue as soon as the write data is sent.

RW 0x0

2 Reserved. - - -

1 TDMODE 2D Mode

1 = 2D mode interpret the TXFR_LEN register as YLENGTH

number of transfers each of XLENGTH, and add the strides

to the address after each transfer.

0 = Linear mode interpret the TXFR_LEN register as a

single transfer of total length {YLENGTH, XLENGTH}.

RW 0x0

0 INTEN Interrupt Enable

1 = Generate an interrupt when the transfer described by

the current Control Block completes.

0 = Do not generate an interrupt.

RW 0x0

0_SOURCE_AD, 1_SOURCE_AD, …, 9_SOURCE_AD, 10_SOURCE_AD Registers

Description

DMA Source Address

Table 41.

0_SOURCE_AD,

1_SOURCE_AD, …,

9_SOURCE_AD,

10_SOURCE_AD

Registers

Bits Name Description Type Reset

31:0 S_ADDR DMA Source Address

Source address for the DMA operation. Updated by the

DMA engine as the transfer progresses.

RW 0x00000000

0_DEST_AD, 1_DEST_AD, …, 9_DEST_AD, 10_DEST_AD Registers

Description

DMA Destination Address

Table 42. 0_DEST_AD,

1_DEST_AD, …,

9_DEST_AD,

10_DEST_AD Registers

Bits Name Description Type Reset

31:0 D_ADDR DMA Destination Address

Destination address for the DMA operation. Updated by the

DMA engine as the transfer progresses.

RW 0x00000000

0_TXFR_LEN, 1_TXFR_LEN, …, 5_TXFR_LEN, 6_TXFR_LEN Registers

Description

DMA Transfer Length. This specifies the amount of data to be transferred in bytes.

In normal (non 2D) mode this specifies the amount of bytes to be transferred.

In 2D mode it is interpreted as an X and a Y length, and the DMA will perform Y transfers, each of length X bytes and

add the strides onto the addresses after each X leg of the transfer.

The length register is updated by the DMA engine as the transfer progresses, so it will indicate the data left to

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 43



transfer.

Table 43.

0_TXFR_LEN,

1_TXFR_LEN, …,

5_TXFR_LEN,

6_TXFR_LEN Registers

Bits Name Description Type Reset

31:30 Reserved. - - -

29:16 YLENGTH When in 2D mode, This is the Y transfer length, indicating

how many xlength transfers are performed. When in

normal linear mode this becomes the top bits of the

XLENGTH

RW 0x0000

15:0 XLENGTH Transfer Length in bytes. RW 0x0000

0_STRIDE, 1_STRIDE, …, 5_STRIDE, 6_STRIDE Registers

Description

DMA 2D Stride

Table 44. 0_STRIDE,

1_STRIDE, …,

5_STRIDE, 6_STRIDE

Registers

Bits Name Description Type Reset

31:16 D_STRIDE Destination Stride (2D Mode)

Signed (2 s complement) byte increment to apply to the

destination address at the end of each row in 2D mode.

RW 0x0000

15:0 S_STRIDE Source Stride (2D Mode)

Signed (2 s complement) byte increment to apply to the

source address at the end of each row in 2D mode.

RW 0x0000

0_NEXTCONBK, 1_NEXTCONBK, …, 9_NEXTCONBK, 10_NEXTCONBK Registers

Description

DMA Next Control Block Address

The value loaded into this register can be overwritten so that the linked list of Control Block data structures can be

altered. However it is only safe to do this when the DMA is paused. The address must be 256-bit aligned and so the

bottom 5 bits cannot be set and will read back as zero.

Table 45.

0_NEXTCONBK,

1_NEXTCONBK, …,

9_NEXTCONBK,

10_NEXTCONBK

Registers

Bits Name Description Type Reset

31:0 ADDR Address of next CB for chained DMA operations. RW 0x00000000

0_DEBUG, 1_DEBUG, …, 5_DEBUG, 6_DEBUG Registers

Description

DMA Debug register.

Table 46. 0_DEBUG,

1_DEBUG, …, 5_DEBUG,

6_DEBUG Registers

Bits Name Description Type Reset

31:29 Reserved. - - -

28 LITE DMA Lite

Set if the DMA is a reduced performance LITE engine.

RO 0x0

27:25 VERSION DMA Version

DMA version number, indicating control bit field changes.

RO 0x2

24:16 DMA_STATE DMA State Machine State

Returns the value of the DMA engine’s state machine for

this channel.

RO 0x000

15:8 DMA_ID DMA ID

Returns the DMA AXI ID of this DMA channel.

RO 0x00

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 44



Bits Name Description Type Reset

7:4 OUTSTANDING_W

RITES

DMA Outstanding Writes Counter

Returns the number of write responses that have not yet

been received.

This count is reset at the start of each new DMA transfer or

with a DMA reset.

RO 0x0

3 Reserved. - - -

2 READ_ERROR Slave Read Response Error

Set if the read operation returned an error value on the read

response bus. It can be cleared by writing a 1.

W1C 0x0

1 FIFO_ERROR FIFO Error

Set if the optional read FIFO records an error condition. It

can be cleared by writing a 1.

W1C 0x0

0 READ_LAST_NOT_

SET_ERROR

Read Last Not Set Error

If the AXI read last signal was not set when expected, then

this error bit will be set. It can be cleared by writing a 1.

W1C 0x0

7_TI, 8_TI, 9_TI, 10_TI Registers

Description

DMA Lite Transfer Information.

Table 47. 7_TI, 8_TI,

9_TI, 10_TI Registers
Bits Name Description Type Reset

31:26 Reserved. - - -

25:21 WAITS Add Wait Cycles

This slows down the DMA throughput by setting the

number of dummy cycles burnt after each DMA read or

write operation is completed.

A value of 0 means that no wait cycles are to be added.

RW 0x00

20:16 PERMAP Peripheral Mapping

Indicates the peripheral number (1-31) whose ready signal

shall be used to control the rate of the transfers, and whose

panic signals will be output on the DMA AXI bus. Set to 0

for a continuous un-paced transfer.

RW 0x00

15:12 BURST_LENGTH Burst Transfer Length

Indicates the burst length of the DMA transfers. The DMA

will attempt to transfer data as bursts of this number of

words. A value of zero will produce a single transfer. Bursts

are only produced for specific conditions, see main text.

RW 0x0

11 Reserved. - - -

10 SRC_DREQ Control Source Reads with DREQ

1 = The DREQ selected by PERMAP will gate the source

reads.

0 = DREQ has no effect.

RW 0x0

9 SRC_WIDTH Source Transfer Width

1 = Use 128-bit source read width.

0 = Use 32-bit source read width.

RW 0x0

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 45



Bits Name Description Type Reset

8 SRC_INC Source Address Increment

1 = Source address increments after each read. The

address will increment by 4, if SRC_WIDTH=0 else by 32.

0 = Source address does not change.

RW 0x0

7 Reserved. - - -

6 DEST_DREQ Control Destination Writes with DREQ

1 = The DREQ selected by PERMAP will gate the

destination writes.

0 = DREQ has no effect.

RW 0x0

5 DEST_WIDTH Destination Transfer Width

1 = Use 128-bit destination write width.

0 = Use 32-bit destination write width.

RW 0x0

4 DEST_INC Destination Address Increment

1 = Destination address increments after each write. The

address will increment by 4, if DEST_WIDTH=0 else by 32.

0 = Destination address does not change.

RW 0x0

3 WAIT_RESP Wait for a Write Response

When set this makes the DMA wait until it receives the AXI

write response for each write. This ensures that multiple

writes cannot get stacked in the AXI bus pipeline.

1= Wait for the write response to be received before

proceeding.

0 = Don’t wait; continue as soon as the write data is sent.

RW 0x0

2:1 Reserved. - - -

0 INTEN Interrupt Enable

1 = Generate an interrupt when the transfer described by

the current Control Block completes.

0 = Do not generate an interrupt.

RW 0x0

7_TXFR_LEN, 8_TXFR_LEN, 9_TXFR_LEN, 10_TXFR_LEN Registers

Description

DMA Lite Transfer Length

Table 48.

7_TXFR_LEN,

8_TXFR_LEN,

9_TXFR_LEN,

10_TXFR_LEN

Registers

Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 XLENGTH Transfer Length

Length of transfer, in bytes. Updated by the DMA engine as

the transfer progresses.

RW 0x0000

7_DEBUG, 8_DEBUG, 9_DEBUG, 10_DEBUG Registers

Description

DMA Lite Debug register.

Table 49. 7_DEBUG,

8_DEBUG, 9_DEBUG,

10_DEBUG Registers

Bits Name Description Type Reset

31:29 Reserved. - - -

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 46



Bits Name Description Type Reset

28 LITE DMA Lite

Set if the DMA is a reduced performance LITE engine.

RO 0x1

27:25 VERSION DMA Version

DMA version number, indicating control bit field changes.

RO 0x2

24:16 DMA_STATE DMA State Machine State

Returns the value of the DMA engine’s state machine for

this channel.

RO 0x000

15:8 DMA_ID DMA ID

Returns the DMA AXI ID of this DMA channel.

RO 0x00

7:4 OUTSTANDING_W

RITES

DMA Outstanding Writes Counter

Returns the number of write responses that have not yet

been received.

This count is reset at the start of each new DMA transfer or

with a DMA reset.

RO 0x0

3 Reserved. - - -

2 READ_ERROR Slave Read Response Error

Set if the read operation returned an error value on the read

response bus. It can be cleared by writing a 1.

W1C 0x0

1 FIFO_ERROR FIFO Error

Set if the optional read FIFO records an error condition. It

can be cleared by writing a 1.

W1C 0x0

0 READ_LAST_NOT_

SET_ERROR

Read Last Not Set Error

If the AXI read last signal was not set when expected, then

this error bit will be set. It can be cleared by writing a 1.

W1C 0x0

11_CS, 12_CS, 13_CS, 14_CS Registers

Description

DMA4 Control and Status register contains the main control and status bits for this DMA4 channel.

Table 50. 11_CS,

12_CS, 13_CS, 14_CS

Registers

Bits Name Description Type Reset

31 HALT Writing a 1 to this bit will cleanly halt the current DMA

transfer. The halt will cause the DMA4 to zero its length

counters and thus it will complete the current transfer and

wait until all outstanding bus activity has finished.

The DMA4 will then zero the active flag and return to idle,

leaving the address of the aborted CB in the CB reg.

The halt bit will self clear when the DMA4 has fully stopped.

The Halt bit can be automatically set if the DMA4 detects

an error and the debug HALT_ON_ERROR bit is set.

W1SC 0x0

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 47



Bits Name Description Type Reset

30 ABORT Abort DMA

Writing a 1 to this bit will cleanly abort the current DMA

transfer. The abort will cause the DMA4 to zero its length

counters and thus it will complete the current transfer and

wait until all outstanding bus activity has finished.

The DMA4 will then check the NEXT_CB address and if it is

non zero it will load it into the CB and attempt to continue.

The abort bit will self clear when the abort has completed.

The abort bit can be automatically set if the DMA4 detects

an error and the debug ABORT_ON_ERROR bit is set.

W1SC 0x0

29 DISDEBUG Disable Debug Pause Signal

When set to 1, the DMA4 will not pause when the debug

pause signal is asserted.

Normally the DMA4 will pause when the debugger asserts

the debug_pause DMA control signal. This prevents the

DMA4 from running on ahead when the processor is

stopped by the debugger. Debug_pause will cleanly pause

the DMA4 by preventing it from issuing new commands.

Releasing the debug_pause will allow the DMA4 to carry on

where it left off.

RW 0x0

28 WAIT_FOR_OUTS

TANDING_WRITE

S

Wait for outstanding writes.

The DMA4 keeps a tally of the AXI writes requests going

out and the write responses coming in.

When set to 1, the DMA4 will complete the current transfer

and then wait until the last outstanding write response has

been received and the tally has returned to zero. Only then

will it indicate that the transfer is complete and set the END

flag or if required the INT and move on to the next CB.

The number of outstanding writes will be limited by the

FIFO size as set by the instantiation parameters.

RW 0x0

27:26 Reserved. - - -

25 OUTSTANDING_T

RANSACTIONS

Indicates that there are outstanding AXI transfers, either

outstanding read data or outstanding write responses

This just indicates that the outstanding counters in

DEBUG2 are >0

RO 0x0

24 DMA_BUSY Indicates the DMA4 is BUSY.

This indicates that the DMA4 is operating or waiting for

outstanding data or otherwise in use.

It can be used as an indicator of when it is safe to

powersave the DMA4 and turn off all the clocks by using

the global DMA_EN bits

RO 0x0

23:20 PANIC_QOS AXI Panic QOS Level

Sets the QOS level of AXI bus transactions when the DMA4

is panicking.

This value is used when the panic bit of the selected

peripheral channel is 1 indicating that the peripheral is in

panic mode.

Zero is the lowest QOS.

RW 0x0

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 48



Bits Name Description Type Reset

19:16 QOS AXI QOS Level

Sets the QOS level of normal AXI bus transactions. This

value is used when the panic bit of the selected peripheral

channel is zero or when no peripheral is selected as in a

memory to memory transfer.

Zero is the lowest QOS.

RW 0x0

15:11 Reserved. - - -

10 ERROR DMA Error

Indicates if the DMA4 has detected an error.

The error flags are available in the debug register, and are

cleared by reading that register.

1 = there is error flag set.

0 = no errors.

RO 0x0

9:8 Reserved. - - -

7 WAITING_FOR_OU

TSTANDING_WRI

TES

The DMA4 is Waiting for all the Write Response to be

returned.

If WAIT_FOR_OUTSTANDING_WRITES is enabled, the

DMA4 will complete its transfer and then enter a waiting

state where it waits for all the outstanding write responses

to be returned. When they are all accounted for, the DMA4

will indicate that the transfer is complete and set the END

or INT flags and move on to the next CB.

1 = The DMA4 is waiting for outstanding bresponses.

RO 0x0

6 DREQ_STOPS_DM

A

DMA Paused by DREQ State

This indicates that the DMA4 is currently paused and not

transferring data due to the selected DREQ being inactive.

The DMA4 has either src_dreq or dest_dreq set in its CB

and the permap value will be indicating which of the DREQ

line it should select.

If this DREQ line is low then the DMA4 will be paused

waiting for the peripheral to request more data.

1 = DMA is paused.

0 = DMA is running.

RO 0x0

5 WR_PAUSED DMA Write Paused State

Indicates that the DMA4 is currently paused and not writing

data.

This will occur if: the active bit has been cleared, if the

debug_pause signal has been set by the debug block, or the

selected peripheral dreq input isn’t set and writes are gated

by dreq.

1 = paused for writes.

0 = running.

RO 0x0

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 49



Bits Name Description Type Reset

4 RD_PAUSED DMA read Paused State

Indicates that the DMA4 is currently paused and not

reading data.

This will occur if: the active bit has been cleared or if the

debug_pause signal has been set by the debug block or the

selected peripheral dreq isn’t set and reads are gated by

dreq.

1 = paused for reads.

0 = running.

RO 0x0

3 DREQ DREQ State

Indicates the state of the selected DREQ (Data Request)

signal, i.e. the DREQ selected by the PERMAP field of the

transfer info.

1 = Requesting data. This will only be valid once the DMA

has started and the PERMAP field has been loaded from

the CB. It will remain valid, indicating the selected DREQ

signal, until a new CB is loaded. If PERMAP is set to zero

(un-paced transfer) then this bit will read back as 1.

0 = No data request.

RO 0x1

2 INT Interrupt Status

If interrupts are enabled (INTEN is set to 1) the interrupt is

set when the transfer for the current CB is completed.

If WAIT_FOR_OUTSTANDING_WRITES is enabled, the

DMA4 will wait for all the outstanding bresponses before

setting the INT bit.

Once set it must be manually cleared by writing a 1 to this

bit, even if the next CB has INTEN = 0.

The interrupt can also be set if the INT_ON_ERROR debug

bit is set and an error is detected. An error interrupt won’t

be set until the current CB has completed.

Write 1 to clear.

W1C 0x0

1 END End Flag

Set when the transfer described by the current Control

Block is complete.

If WAIT_FOR_OUTSTANDING_WRITES is enabled, the

DMA4 will wait for all the outstanding bresponses before

setting the end bit.

Once set it must be manually cleared by writing a 1 to this

bit.

Write 1 to clear.

W1C 0x0

0 ACTIVE Activate the DMA4

This bit enables the DMA4 to start transferring data.

The DMA4 will start operating if this bit is set and the CB is

non zero.

The DMA transfer can be cleanly paused and re-started in

mid transfer by clearing and setting this active bit.

The DMA4 will pause at a safe AXI transaction point.

This bit is automatically cleared at the end of the CB linked

List, i.e. after a CB with a NEXTCONBK = 0x0000_0000 has

been executed.

RW 0x0

11_CB, 12_CB, 13_CB, 14_CB Registers

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 50



Description

DMA4 Control Block Address register.

Table 51. 11_CB,

12_CB, 13_CB, 14_CB

Registers

Bits Name Description Type Reset

31:0 ADDR Control Block Address [36:5]

This tells the DMA4 where to find a Control Block (CB)

stored in memory. The address must be 256-bit aligned, i.e.

the bottom 5 address bits are 0.

To support a larger address range, the bottom 5 bits of the

CB address are not written here i.e. you should write

CB_byte_addr>>5

The DMA4 will not start unless this address is non zero and

the ACTIVE bit has been set.

Once the CB and Active are set, the DMA4 will start by

reading the CB from the given address and loading the data

into the relevant CB registers

It will then execute the DMA described by the CB regardless

of what it is, so if garbage is read then it will execute it.

At the end of the DMA transfer described by the CB, the

NEXTCONBK field of the CB will be loaded into to this

CB_ADDR register and if it is non zero another DMA

sequence will begin anew.

Reading this register will return the address of the currently

active CB.

RW 0x00000000

11_DEBUG, 12_DEBUG, 13_DEBUG, 14_DEBUG Registers

Description

DMA4 Debug register.

Table 52. 11_DEBUG,

12_DEBUG, 13_DEBUG,

14_DEBUG Registers

Bits Name Description Type Reset

31:28 VERSION DMA Version

DMA version number, indicating control bit field changes.

RO 0x1

27:24 ID ID

Returns the ID of this DMA4. This is also used as the AXI

subid

RO 0x0

23 RESET DMA Reset

This is a hard reset of the DMA4 state machine and certain

internal registers.

Writing a 1 to this bit will reset the DMA4. The bit cannot be

read, and will self clear.

Using this in the middle of a DMA transfer or when the AXI

bus is active or has outstanding transactions will probably

be fatal.

W1SC 0x0

22 Reserved. - - -

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 51



Bits Name Description Type Reset

21:18 W_STATE Write State Machine State

Returns the value of the DMA4 engine’s write state

machine.

W_IDLE = 0

W_PRELOAD = 1

W_CALC = 2

W_WRITE4K = 3

W_READFIFO_EMPTY = 4

W_WAIT_OUTSTANDING = 5

RO 0x0

17:14 R_STATE Read State Machine State

Returns the value of the DMA4 engine’s read state

machine.

R_IDLE = 0

R_WAIT_CB_DATA = 1

R_CALC = 2

R_READ4K = 3

R_READING = 4

R_READFIFO_FULL = 5

R_WAIT_WRITE_COMPLETE = 6

RO 0x0

13:12 Reserved. - - -

11 DISABLE_CLK_GA

TE

Disable the clock gating logic. RW 0x0

10 ABORT_ON_ERRO

R

Instruct the DMA4 to ABORT if it detects an error. If any of

the error conditions are met then the CS_ABORT bit will be

set causing the DMA4 to terminate the current CB and

attempt to start the next one.

Clearing this bit will allow it to plough on regardless and

probably trample over the entire memory.

RW 0x1

9 HALT_ON_ERROR Instruct the DMA4 to HALT if it detects an error. If any of

the error conditions are met then the CS_HALT bit will be

set causing the DMA4 to stop.

This will override the abort on error behaviour.

RW 0x0

8 INT_ON_ERROR Generate an interrupt if an error is detected

This forces the DMA4 to generate an error even if the inten

bit in the TI isn’t set

The int will be generated when the DMA4 finishes the

current CB

RW 0x0

7:4 Reserved. - - -

3 READ_CB_ERROR Slave Read Response Error During Control Block Read

Set if the read operation returned an error value on the read

response bus whilst reading the CB.

It is cleared by reading.

RC 0x0

2 READ_ERROR Slave Read Response Error

Set if the read operation returned an error value on the read

response bus during a data read.

It is cleared by reading.

RC 0x0

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 52



Bits Name Description Type Reset

1 FIFO_ERROR FIFO Error

Set if the optional read FIFO records an error condition

(read when empty or write when full).

It is cleared by reading.

RC 0x0

0 WRITE_ERROR Slave Write Response Error

Set if a write operation returned an error value on the write

response bus.

It is cleared by reading.

RC 0x0

11_TI, 12_TI, 13_TI, 14_TI Registers

Description

DMA4 Transfer Information.

Table 53. 11_TI, 12_TI,

13_TI, 14_TI Registers
Bits Name Description Type Reset

31:24 D_WAITS Write Wait Cycles

This slows down the DMA throughput by setting the

number of dummy cycles before each AXI Write operation

is started.

A value of 0 means that no wait cycles are to be added.

Waits are counted down when the DMA4 wants to do a

wait and the bus is available and the writes aren’t paused

because of DREQS or some other reason.

RW 0x00

23:16 S_WAITS Read Wait Cycles

This slows down the DMA throughput by setting the

number of dummy cycles burnt before each DMA AXI read

operation is started.

A value of 0 means that no wait cycles are to be added.

Waits are counted down when the DMA4 wants to do a

read and the bus is available and the reads aren’t paused

because of DREQS or some other reason.

RW 0x00

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 53



Bits Name Description Type Reset

15 D_DREQ Control Destination Writes with DREQ.

This is used when writing to a peripheral that has a DREQ

flow control available to control the data flow.

The DMA4 will observe the DREQ input selected by the

PERMAP value and pause writes when it is low.

Care must be taken when using this as the DMA4 will only

stop writing peripheral data a clock cycle or two after it

sees a low DREQ at its input.

However there may still be outstanding write data in the

pipeline formed by the infrastructure between the DMA and

the peripheral.

The peripheral must take this into account when deciding

when to drop its DREQ signal, and must have spare FIFO

room to accommodate the data that’s still in flight.

The WAIT_RESP feature can be used to ensure there is only

ever 1 outstanding write at any time for use with

peripherals that can’t provide any spare storage for any in-

flight data.

The D_WAITS feature can be used to add a delay before

each write to allow the DREQ more time to make it back to

the DMA.

1 = The DREQ selected by PERMAP will gate the

Destination writes.

0 = DREQ has no effect.

RW 0x0

14 S_DREQ Control Source Reads with DREQ

This is used when reading from a peripheral that has a

DREQ flow control available.

The DMA will observe the DREQ input selected by the

permap value and pause reads when it is low.

Care must be taken when using this as the DMA4 will only

stop issuing peripheral read requests a clock cycle or two

after it sees a low DREQ at its input.

The AXI infrastructure will allow several read requests to

become queued outside of the DMA4 engine so it’s

possible to request far more data may than a peripheral

can immediately supply.

If this happens then the infrastructure may become locked

until the data is available and this will adversely affect

system performance.

The WAIT_RD_RESP option prevents the DMA4 from

issuing more than 1 read request at a time, so the amount

of data requested can be governed by the burst size, and

this allows more time for the peripheral to retract its DREQ

when it runs out of data.

The S_WAITS feature can be used to add a delay before

each read to allow the DREQ more time to make it back to

the DMA.

1 = The DREQ selected by PERMAP will gate the source

reads.

0 = DREQ has no effect.

RW 0x0

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 54



Bits Name Description Type Reset

13:09 PERMAP Peripheral Mapping

Indicates the DREQ of selected peripheral (1-31).

The DMA4 will select the DREQ from this peripheral and

use that to control the rate of read or write transfers.

The DMA4 will also select the panic signals from this

peripheral and use that to set the QOS level on the AXI bus.

Setting a PERMAP of 0 selects a dummy peripheral that is

always active for a continuous un-paced transfer.

RW 0x00

8:4 Reserved. - - -

3 WAIT_RD_RESP Wait for a Read Response

When set this makes the DMA4 wait until it receives all the

data from each read. This ensures that multiple reads

cannot get stacked in the AXI bus pipeline.

This allows the amount of data to be controlled by the

burst size, e.g. when reading for a peripheral FIFO

1 = Wait for the read data to be received before proceeding.

0 = Don’t wait; allow multiple reads to be queued.

RW 0x0

2 WAIT_RESP Wait for a Write Response

When set this makes the DMA4 wait until it receives the AXI

write response for each write. This ensures that multiple

writes cannot get stacked in the AXI bus pipeline.

1 = Wait for the write response to be received before

proceeding.

0 = Don’t wait; continue as soon as the write data is sent.

RW 0x0

1 TDMODE 2D Mode - perform a 2D transfer instead of a normal linear

transfer.

In 2D mode the DMA4 will interpret the length field as an X

and a Y length. It will execute Y+1 transfers each of length

X.

After each X transfer, the DMA4 will add the value in the

STRIDE registers to the source and destination address.

If 2D mode isn’t selected then the DMA4 interprets the X&Y

lengths as a single 30bit length and performs one transfer

of that number of bytes.

1 = 2D mode - perform Y+1 transfers of X bytes

0 = Linear mode interpret the LEN register as a single

transfer of total length {YLENGTH, XLENGTH} bytes.

RW 0x0

0 INTEN Interrupt Enable

1 = Generate an interrupt when the transfer described by

the current Control Block completes.

0 = Do not generate an interrupt.

RW 0x0

11_SRC, 12_SRC, 13_SRC, 14_SRC Registers

Description

Lower 32 bits of the DMA4 Source Address

The DMA4 can handle up to 40bit addresses so the full source address is split over 2 registers.

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 55



Table 54. 11_SRC,

12_SRC, 13_SRC,

14_SRC Registers

Bits Name Description Type Reset

31:0 ADDR Lower bits of the Source Address [31:0]

This specifies the BYTE address that the DMA4 should

read source data from.

The address is BYTE aligned allowing transfers from any

byte address to any other byte address.

This reg value is automatically updated by the DMA4

engine as the transfer progresses, so it indicates the

current address being read.

RW 0x00000000

11_SRCI, 12_SRCI, 13_SRCI, 14_SRCI Registers

Description

DMA4 Source Information

This contains the high bits of the source address[40:32] as well as other source control bits

Table 55. 11_SRCI,

12_SRCI, 13_SRCI,

14_SRCI Registers

Bits Name Description Type Reset

31:16 STRIDE Source Stride

This is only used in 2D transfer mode (TDMODE).

In a 2D transfer the DMA4 will perform Y transfers each of

X bytes. At the end of each X row, the source stride is

added to the source address and this is used as the start

address of the source data for the next X row.

The source stride is a signed (2 s complement) byte

increment so negative values are allowed.

RW 0x0000

15 IGNORE Ignore Reads.

The DMA4 will perform a normal transfer except that it will

not produce any reads. The DMA4 will write zero data.

1 = Do not perform source reads.

0 = Perform source reads.

RW 0x0

14:13 SIZE Source Transfer Width

The DMA4 will perform all AXI source reads with this AXI

transfer width. Data will be fetched in bursts of this width

and assembled into the correct data size inside the DMA4.

On the BCM2711 the width cannot be set larger than 128

bits.

3 = 256

2 = 128

1 = 64

0 = 32

RW 0x0

12 INC Increment the Source Address

1 = Source address increments after each read. The

address will increment by by the number of bytes in the

transfer width.

0 = Source address does not change. Data will always be

read from the same source address with an AXI "Fixed"

transfer. This is intended to be used to read from a

peripheral FIFO type of source.

RW 0x0

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 56



Bits Name Description Type Reset

11:08 BURST_LENGTH Burst Transfer Length

Indicates the maximum burst length of the source reads.

The DMA4 will attempt to transfer data as bursts of this

number of words unless it will cause a 4k crossing or there

isn’t enough data required.

A value of zero will produce a single-beat transfer.

RW 0x0

7:0 ADDR High Bits of the Source Address [40:32]

The source address is split over 2 registers, and together

they give a 40-bit address

RW 0x00

11_DEST, 12_DEST, 13_DEST, 14_DEST Registers

Description

Lower 32 bits of the DMA4 Destination Address

The DMA4 can handle up to 40bit addresses so the full address is split over 2 registers.

Table 56. 11_DEST,

12_DEST, 13_DEST,

14_DEST Registers

Bits Name Description Type Reset

31:0 ADDR Destination Address

This specifies the BYTE address that the DMA4 should

write data to.

The address is BYTE aligned allowing transfers from any

byte address to any other byte address.

This register value is automatically updated by the DMA4

engine as the transfer progresses, so it indicates the

current address being written.

RW 0x00000000

11_DESTI, 12_DESTI, 13_DESTI, 14_DESTI Registers

Description

DMA4 Destination Information

This contains the high bits of the destination address [40:32] and other information bits for the destination

Table 57. 11_DESTI,

12_DESTI, 13_DESTI,

14_DESTI Registers

Bits Name Description Type Reset

31:16 STRIDE Destination Stride

This is only used in 2D transfer mode.

In a 2D transfer the DMA4 will perform Y transfers each of

X bytes. At the end of each X row, the destination stride is

added to the destination address and this is used as the

start address of the destination for the next X row.

The destination stride is a signed (2 s complement) byte

increment so negative values are allowed.

RW 0x0000

15 IGNORE Ignore Destination Writes

1 = Do not perform destination Writes. The DMA4 will read

the source data but not write it.

0 = Perform destination Writes.

RW 0x0

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 57



Bits Name Description Type Reset

14:13 SIZE Destination Transfer Width

The DMA4 will perform all AXI destination writes with this

AXI transfer width. Data will be written in bursts of this

width. On the BCM2711 the width cannot be set larger than

128 bits.

3 = 256

2 = 128

1 = 64

0 = 32

RW 0x0

12 INC Destination Address Increment

1 = Destination address increments after each write. The

address will increment by by the number bytes in the

transfer width.

0 = Destination address does not change.

RW 0x0

11:08 BURST_LENGTH Burst Transfer Length

Indicates the maximum burst length of the destination

writes. The DMA4 will attempt to transfer data as bursts of

this number of words unless it will cause a 4k crossing or

there isn’t enough data required.

A value of zero will produce a single transfer.

RW 0x0

7:0 ADDR High Bits of the Destination Address [40:32]

The destination address is split over 2 registers, and

together they give a 40-bit address

RW 0x00

11_LEN, 12_LEN, 13_LEN, 14_LEN Registers

Description

DMA4 Transfer Length.

This specifies the amount of data to be transferred in bytes.

In normal (non 2D) mode the X&Y are combined to specifies the number of bytes to be transferred up to a max of

2^30-1.

In 2D mode it is interpreted as an X and a Y length, and the DMA4 will perform Y+1 transfers, each of length X bytes.

In 2D mode the source and destination strides are added onto the source and destination addresses after each X leg

of the transfer.

The length register is updated by the DMA4 engine as the transfer progresses, so it will indicate the data left to

transfer.

Table 58. 11_LEN,

12_LEN, 13_LEN,

14_LEN Registers

Bits Name Description Type Reset

31:30 Reserved. - - -

29:16 YLENGTH When in 2D mode, This is the Y transfer length, indicating

how many xlength transfers are performed. When in

normal linear mode this becomes the top bits of the

XLENGTH

In 2D mode a value of 0 will result in a single XLENGTH

transfer and a value of 1 will result in 2 XLENGTH transfers.

RW 0x0000

15:0 XLENGTH Transfer Length in bytes.

A value of 1 will transfer 1 byte

A value of 0 is illegal

RW 0x0000

11_NEXT_CB, 12_NEXT_CB, 13_NEXT_CB, 14_NEXT_CB Registers

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 58



Description

DMA4 Next Control Block Address

When the current DMA transfer has completed, the Next Control Block address is transferred to the CB address

register and if the active bit is still set the next DMA in the linked list of CBs is begun.

A CB with a Next Control Block Address of 0 indicates the end of the list. Once that CB is executed the zero next CB

will be loaded and the DMA will stop (as the start condition for the DMA4 is (ACTIVE & CB!=0).

The value loaded into this register can be overwritten so that the linked list of Control Block data structures can be

dynamically altered. However it is only safe to do this when the DMA4 is paused.

The address must be 256-bit aligned and so the bottom 5 bits of the byte address are discarded, i.e. write

cb_byte_address[39:0]>>5 into the CB.

Table 59.

11_NEXT_CB,

12_NEXT_CB,

13_NEXT_CB,

14_NEXT_CB

Registers

Bits Name Description Type Reset

31:0 ADDR Address of next CB for chained DMA operations. RW 0x00000000

11_DEBUG2, 12_DEBUG2, 13_DEBUG2, 14_DEBUG2 Registers

Description

DMA4 Debug2 register.

Table 60. 11_DEBUG2,

12_DEBUG2,

13_DEBUG2,

14_DEBUG2 Registers

Bits Name Description Type Reset

31:25 Reserved. - - -

24:16 OUTSTANDING_R

EADS

Outstanding read Words Count

This indicates the number of outstanding read words.

This keeps count of the number of read words that have

been requested and the number that have actually been

returned.

This should be zero at the end of every transfer

RO 0x000

15:9 Reserved. - - -

8:0 OUTSTANDING_W

RITES

Outstanding Write Response Count

This indicates the number of outstanding write responses.

This keeps count of the number of write requests that have

been generated and the number of bresponses that have

been returned.

This should be zero at the end of every transfer

RO 0x000

INT_STATUS Register

Description

Interrupt status of each DMA engine

Table 61. INT_STATUS

Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15 INT15 Interrupt status of DMA engine 15 RO 0x0

14 INT14 Interrupt status of DMA engine 14 RO 0x0

13 INT13 Interrupt status of DMA engine 13 RO 0x0

12 INT12 Interrupt status of DMA engine 12 RO 0x0

11 INT11 Interrupt status of DMA engine 11 RO 0x0

10 INT10 Interrupt status of DMA engine 10 RO 0x0

9 INT9 Interrupt status of DMA engine 9 RO 0x0

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 59



Bits Name Description Type Reset

8 INT8 Interrupt status of DMA engine 8 RO 0x0

7 INT7 Interrupt status of DMA engine 7 RO 0x0

6 INT6 Interrupt status of DMA engine 6 RO 0x0

5 INT5 Interrupt status of DMA engine 5 RO 0x0

4 INT4 Interrupt status of DMA engine 4 RO 0x0

3 INT3 Interrupt status of DMA engine 3 RO 0x0

2 INT2 Interrupt status of DMA engine 2 RO 0x0

1 INT1 Interrupt status of DMA engine 1 RO 0x0

0 INT0 Interrupt status of DMA engine 0 RO 0x0

ENABLE Register

Description

Global enable bits for each channel.

Setting these to 0 will disable the DMA for power saving reasons. Disabling whilst the DMA is operating will be fatal.

Table 62. ENABLE

Register
Bits Name Description Type Reset

31:28 PAGELITE Set the 1G SDRAM ram page that the DMA Lite engines

(DMA7-10) will access when addressing the 1G uncached

range C000_0000->ffff_ffff

E.g. setting this to 1 will mean that when the DMA writes to

C000_0000 (uncached) the final address in SDRAM will be

4000_0000 ( pagelite<<30 | addr[29:0] )

This allows the 1G uncached page to be moved around the

16G SDRAM space

RW 0x0

27:24 PAGE Set the 1G SDRAM ram page that the 30-bit DMA engines

(DMA0-6) will access when addressing the 1G uncached

range C000_0000->ffff_ffff

E.g. setting this to 1 will mean that when the DMA writes to

C000_0000 (uncached) the final address in SDRAM will be

4000_0000 ( page<<30 | addr[29:0] )

This allows the 1G uncached page to be moved around the

16G SDRAM space

RW 0x0

23:15 Reserved. - - -

14 EN14 Enable DMA engine 14 RW 0x1

13 EN13 Enable DMA engine 13 RW 0x1

12 EN12 Enable DMA engine 12 RW 0x1

11 EN11 Enable DMA engine 11 RW 0x1

10 EN10 Enable DMA engine 10 RW 0x1

9 EN9 Enable DMA engine 9 RW 0x1

8 EN8 Enable DMA engine 8 RW 0x1

7 EN7 Enable DMA engine 7 RW 0x1

6 EN6 Enable DMA engine 6 RW 0x1

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 60



Bits Name Description Type Reset

5 EN5 Enable DMA engine 5 RW 0x1

4 EN4 Enable DMA engine 4 RW 0x1

3 EN3 Enable DMA engine 3 RW 0x1

2 EN2 Enable DMA engine 2 RW 0x1

1 EN1 Enable DMA engine 1 RW 0x1

0 EN0 Enable DMA engine 0 RW 0x1

4.2.1.3. Peripheral DREQ Signals

A DREQ (Data Request) mechanism is used to pace the data flow between the DMA and a peripheral.

Each peripheral is allocated a permanent DREQ signal. Each DMA channel can select which of the DREQ signals should be

used to pace the transfer by controlling the DMA reads, DMA writes or both. Note that DREQ 0 is permanently enabled and

can be used if no DREQ is required.

When a DREQ signal is being used to pace the DMA reads, the DMA will wait until it has sampled DREQ high before

launching a single or burst read operation. It will then wait for all the read data to be returned before re-checking the DREQ

and starting the next read. Thus once a peripheral receives the read request it should remove its DREQ as soon as

possible to prevent the DMA from re-sampling the same DREQ assertion.

DREQs are not required when reading from AXI peripherals. In this case, the DMA will request data from the peripheral and

the peripheral will only send the data when it is available. The DMA will not request data that is does not have room for, so

no pacing of the data flow is required.

DREQs are required when reading from APB peripherals as the AXI-to-APB bridge will not wait for an APB peripheral to be

ready and will just perform the APB read regardless. Thus an APB peripheral needs to make sure that it has all of its read

data ready before it drives its DREQ high.

When writing to peripherals, a DREQ is always required to pace the data. However, due to the pipelined nature of the AXI

bus system, several writes may be in flight before the peripheral receives any data and withdraws its DREQ signal. Thus

the peripheral must ensure that it has sufficient room in its input FIFO to accommodate the maximum amount of data

that it might receive. If the peripheral is unable to do this, the DMA WAIT_RESP mechanism can be used to ensure that

only one write is in flight at any one time, however this is a less efficient transfer mechanism.

The mapping of peripherals to DREQs is as follows:

DREQ Peripheral

0 DREQ = 1

This is always on so use this channel if no DREQ

is required.

1 DSI0 / PWM1 **

2 PCM TX

3 PCM RX

4 SMI

5 PWM0

6 SPI0 TX

7 SPI0 RX

8 BSC/SPI Slave TX

BCM2711 ARM Peripherals

4.2. DMA Controller Registers 61



DREQ Peripheral

9 BSC/SPI Slave RX

10 HDMI0

11 e.MMC

12 UART0 TX

13 SD HOST

14 UART0 RX

15 DSI1

16 SPI1 TX

17 HDMI1

18 SPI1 RX

19 UART3 TX / SPI4 TX **

20 UART3 RX / SPI4 RX **

21 UART5 TX / SPI5 TX **

22 UART5 RX / SPI5 RX **

23 SPI6 TX

24 Scaler FIFO 0 & SMI *

25 Scaler FIFO 1 & SMI *

26 Scaler FIFO 2 & SMI *

27 SPI6 RX

28 UART2 TX

29 UART2 RX

30 UART4 TX

31 UART4 RX

* The SMI element of the Scaler FIFO 0 & SMI DREQs can be disabled by setting the SMI_DISABLE bit in the

DMA_DREQ_CONTROL register in the system arbiter control block.

** The alternate DREQs are available by changing the DMA_CNTRL_MUX bits in the PACTL_CS register in the peri audio

control block.

4.3. AXI Bursts

The DMA supports bursts under specific conditions. Up to 16 beat bursts can be accommodated.

Peripheral (32-bit wide) read bursts are supported. The DMA will generate the burst if there is sufficient room in its read

buffer to accommodate all the data from the burst. This limits the burst size to a maximum of 8 beats.

Read bursts in destination ignore mode (DEST_IGNORE) are supported as there is no need for the DMA to deal with the

data. This allows wide bursts of up to 16 beats to be used for efficient L2 cache fills.

DMA channel 0 and 15 are fitted with an external 128-bit 8 word read FIFO. This enables efficient memory to memory

transfers to be performed. This FIFO allows the DMA to accommodate a wide read burst up to the size of the FIFO. In

practice this will allow a 128-bit wide read burst of 9 as the first word back will be immediately read into the DMA engine

(or a 32-bit peripheral read burst of 16: 8 in the input buffer and 8 in the FIFO). On any DMA channel, if a read burst is

BCM2711 ARM Peripherals

4.3. AXI Bursts 62



selected that is too large, the AXI read bus will be stalled until the DMA has written out the data. This may lead to

inefficient system operation, and possibly AXI lock up if it causes a circular dependency.

In general write bursts are not supported. However to increase the efficiency of L2 cache fills, source ignore

(SRC_IGNORE) transfers can be specified with a write burst. In this case the DMA will issue a write burst address

sequence followed by the appropriate number of zero data, zero strobe write bus cycles, which will cause the cache to

pre-fetch the data. To improve the efficiency of the 128-bit wide bus architecture, and to make use of the DMA’s internal

256-bit registers, the DMA will generate 128-bit wide writes as 2 beat bursts wherever possible, although this behaviour

can be disabled.

4.4. Error Handling

If the DMA detects a Read Response error it will record the fact in the READ_ERROR flag in the debug register. This will

remain set until it is cleared by writing a 1 to it. The DMA will clear its active flag and generate an interrupt. Any

outstanding read data transactions (remainder of a burst) will be honoured. This allows the operator to either restart the

DMA by clearing the error bit and setting the active bit, or to abort the DMA transfer by clearing the NEXTCONBK register

and restarting the DMA with the ABORT bit set.

The DMA will also record any errors from an external read FIFO. These will be latched in the FIFO_ERROR bit in the debug

register until they are cleared by writing a ‘1’ to the bit. (note that only DMA0 and 15 have an external read FIFO)

If the DMA detects that a read occurred without the AXI rlast signal being set as expected then it will set the

READ_LAST_NOT_SET_ERROR bit in the debug register. This can be cleared by writing a ‘1’ to it.

The error bits are logically OR-ed together and presented as a general ERROR bit in the CS register.

4.5. DMA LITE Engines

Several of the DMA engines are of the LITE design. This is a reduced specification engine designed to save space. The

engine behaves in the same way as a normal DMA engine except for the following differences:

1. The internal data structure is 128 bits instead of 256 bits. This means that if you do a 128-bit wide read burst of

more than 1 beat, the DMA input register will be full and the read bus will be stalled. The normal DMA engine can

accept a read burst of 2 without stalling. If you do a narrow 32-bit read burst from the peripherals then the lite engine

can cope with a burst of 4 as opposed to a burst of 8 for the normal engine. Note that stalling the read bus will

potentially reduce the overall system performance, and may possibly cause a system lockup if you end up with a

conflict where the DMA cannot free the read bus as the read stall has prevented it writing out its data due to some

circular system relationship.

2. The Lite engine does not support 2D transfers. The TDMODE, S_STRIDE, D_STRIDE and YLENGTH registers will all be

removed. Setting these registers will have no effect.

3. The DMA length register is now 16 bits, limiting the maximum transferable length to 65536 bytes.

4. Source ignore (SRC_IGNORE) and destination ignore (DEST_IGNORE) modes are removed. The Lite engine will have

about half the bandwidth of a normal DMA engine, and are intended for low bandwidth peripheral servicing.

4.6. DMA4 Engines

Several of the DMA engines are of the DMA4 design. These have higher performance due to their uncoupled read/write

design and can access up to 40 address bits. Unlike the other DMA engines they are also capable of performing write

bursts. Note that they directly access the full 35-bit address bus of the BCM2711 and so bypass the paging registers of

the DMA and DMA Lite engines.

DMA channel 11 is additionally able to access the PCIe interface.

BCM2711 ARM Peripherals

4.4. Error Handling 63



Chapter 5. General Purpose I/O
(GPIO)

5.1. Overview

There are 58 General-Purpose Input/Output (GPIO) lines split into three banks. Bank 0 contains GPIOs 0 to 27, bank 1

contains GPIOs 28 to 45, and bank 2 contains GPIOs 46 to 57. All GPIO pins have at least two alternative functions within

BCM2711. The alternate functions are usually peripheral IO, and a single peripheral may appear in multiple banks to allow

flexibility on the choice of IO voltage (as each bank has a selectable IO voltage). Details of alternative functions are given

in Section 5.3.

The block diagram for an individual GPIO pin is given below:

Figure 4. GPIO Block

Diagram

The GPIO peripheral has four dedicated interrupt lines. These lines are triggered by the setting of bits in the event detect

status register. Each bank has its own interrupt line with the fourth line shared between all bits.

The Alternate function table (Table 94) also has the pull state (pull-up/pull-down) which is applied after a power down.

BCM2711 ARM Peripherals

5.1. Overview 64



5.2. Register View

The GPIO has the following registers. All accesses are assumed to be 32-bit. The GPIO register base address is

0x7e200000.

Table 63. GPIO

Register Assignment
Offset Name Description

0x00 GPFSEL0 GPIO Function Select 0

0x04 GPFSEL1 GPIO Function Select 1

0x08 GPFSEL2 GPIO Function Select 2

0x0c GPFSEL3 GPIO Function Select 3

0x10 GPFSEL4 GPIO Function Select 4

0x14 GPFSEL5 GPIO Function Select 5

0x1c GPSET0 GPIO Pin Output Set 0

0x20 GPSET1 GPIO Pin Output Set 1

0x28 GPCLR0 GPIO Pin Output Clear 0

0x2c GPCLR1 GPIO Pin Output Clear 1

0x34 GPLEV0 GPIO Pin Level 0

0x38 GPLEV1 GPIO Pin Level 1

0x40 GPEDS0 GPIO Pin Event Detect Status 0

0x44 GPEDS1 GPIO Pin Event Detect Status 1

0x4c GPREN0 GPIO Pin Rising Edge Detect Enable 0

0x50 GPREN1 GPIO Pin Rising Edge Detect Enable 1

0x58 GPFEN0 GPIO Pin Falling Edge Detect Enable 0

0x5c GPFEN1 GPIO Pin Falling Edge Detect Enable 1

0x64 GPHEN0 GPIO Pin High Detect Enable 0

0x68 GPHEN1 GPIO Pin High Detect Enable 1

0x70 GPLEN0 GPIO Pin Low Detect Enable 0

0x74 GPLEN1 GPIO Pin Low Detect Enable 1

0x7c GPAREN0 GPIO Pin Async. Rising Edge Detect 0

0x80 GPAREN1 GPIO Pin Async. Rising Edge Detect 1

0x88 GPAFEN0 GPIO Pin Async. Falling Edge Detect 0

0x8c GPAFEN1 GPIO Pin Async. Falling Edge Detect 1

0xe4 GPIO_PUP_PDN_CNTRL_REG0 GPIO Pull-up / Pull-down Register 0

0xe8 GPIO_PUP_PDN_CNTRL_REG1 GPIO Pull-up / Pull-down Register 1

0xec GPIO_PUP_PDN_CNTRL_REG2 GPIO Pull-up / Pull-down Register 2

0xf0 GPIO_PUP_PDN_CNTRL_REG3 GPIO Pull-up / Pull-down Register 3

GPFSEL0 Register

BCM2711 ARM Peripherals

5.2. Register View 65



Description

The function select registers are used to define the operation of the general-purpose I/O pins. Each of the 58 GPIO

pins has at least two alternative functions as defined in Section 5.3. The FSELn field determines the functionality of

the nth GPIO pin. All unused alternative function lines are tied to ground and will output a “0” if selected. All pins reset

to normal GPIO input operation.

Table 64. GPIO

Alternate function

select register 0

Bits Name Description Type Reset

31:30 Reserved. - - -

29:27 FSEL9 FSEL9 - Function Select 9

000 = GPIO Pin 9 is an input

001 = GPIO Pin 9 is an output

100 = GPIO Pin 9 takes alternate function 0

101 = GPIO Pin 9 takes alternate function 1

110 = GPIO Pin 9 takes alternate function 2

111 = GPIO Pin 9 takes alternate function 3

011 = GPIO Pin 9 takes alternate function 4

010 = GPIO Pin 9 takes alternate function 5

RW 0x0

26:24 FSEL8 FSEL8 - Function Select 8 RW 0x0

23:21 FSEL7 FSEL7 - Function Select 7 RW 0x0

20:18 FSEL6 FSEL6 - Function Select 6 RW 0x0

17:15 FSEL5 FSEL5 - Function Select 5 RW 0x0

14:12 FSEL4 FSEL4 - Function Select 4 RW 0x0

11:9 FSEL3 FSEL3 - Function Select 3 RW 0x0

8:6 FSEL2 FSEL2 - Function Select 2 RW 0x0

5:3 FSEL1 FSEL1 - Function Select 1 RW 0x0

2:0 FSEL0 FSEL0 - Function Select 0 RW 0x0

GPFSEL1 Register

Table 65. GPIO

Alternate function

select register 1

Bits Name Description Type Reset

31:30 Reserved. - - -

29:27 FSEL19 FSEL19 - Function Select 19

000 = GPIO Pin 19 is an input

001 = GPIO Pin 19 is an output

100 = GPIO Pin 19 takes alternate function 0

101 = GPIO Pin 19 takes alternate function 1

110 = GPIO Pin 19 takes alternate function 2

111 = GPIO Pin 19 takes alternate function 3

011 = GPIO Pin 19 takes alternate function 4

010 = GPIO Pin 19 takes alternate function 5

RW 0x0

26:24 FSEL18 FSEL18 - Function Select 18 RW 0x0

23:21 FSEL17 FSEL17 - Function Select 17 RW 0x0

20:18 FSEL16 FSEL16 - Function Select 16 RW 0x0

17:15 FSEL15 FSEL15 - Function Select 15 RW 0x0

14:12 FSEL14 FSEL14 - Function Select 14 RW 0x0

11:9 FSEL13 FSEL13 - Function Select 13 RW 0x0

BCM2711 ARM Peripherals

5.2. Register View 66



Bits Name Description Type Reset

8:6 FSEL12 FSEL12 - Function Select 12 RW 0x0

5:3 FSEL11 FSEL11 - Function Select 11 RW 0x0

2:0 FSEL10 FSEL10 - Function Select 10 RW 0x0

GPFSEL2 Register

Table 66. GPIO

Alternate function

select register 2

Bits Name Description Type Reset

31:30 Reserved. - - -

29:27 FSEL29 FSEL29 - Function Select 29

000 = GPIO Pin 29 is an input

001 = GPIO Pin 29 is an output

100 = GPIO Pin 29 takes alternate function 0

101 = GPIO Pin 29 takes alternate function 1

110 = GPIO Pin 29 takes alternate function 2

111 = GPIO Pin 29 takes alternate function 3

011 = GPIO Pin 29 takes alternate function 4

010 = GPIO Pin 29 takes alternate function 5

RW 0x0

26:24 FSEL28 FSEL28 - Function Select 28 RW 0x0

23:21 FSEL27 FSEL27 - Function Select 27 RW 0x0

20:18 FSEL26 FSEL26 - Function Select 26 RW 0x0

17:15 FSEL25 FSEL25 - Function Select 25 RW 0x0

14:12 FSEL24 FSEL24 - Function Select 24 RW 0x0

11:9 FSEL23 FSEL23 - Function Select 23 RW 0x0

8:6 FSEL22 FSEL22 - Function Select 22 RW 0x0

5:3 FSEL21 FSEL21 - Function Select 21 RW 0x0

2:0 FSEL20 FSEL20 - Function Select 20 RW 0x0

GPFSEL3 Register

Table 67. GPIO

Alternate function

select register 3

Bits Name Description Type Reset

31:30 Reserved. - - -

29:27 FSEL39 FSEL39 - Function Select 39

000 = GPIO Pin 39 is an input

001 = GPIO Pin 39 is an output

100 = GPIO Pin 39 takes alternate function 0

101 = GPIO Pin 39 takes alternate function 1

110 = GPIO Pin 39 takes alternate function 2

111 = GPIO Pin 39 takes alternate function 3

011 = GPIO Pin 39 takes alternate function 4

010 = GPIO Pin 39 takes alternate function 5

RW 0x0

26:24 FSEL38 FSEL38 - Function Select 38 RW 0x0

23:21 FSEL37 FSEL37 - Function Select 37 RW 0x0

20:18 FSEL36 FSEL36 - Function Select 36 RW 0x0

17:15 FSEL35 FSEL35 - Function Select 35 RW 0x0

BCM2711 ARM Peripherals

5.2. Register View 67



Bits Name Description Type Reset

14:12 FSEL34 FSEL34 - Function Select 34 RW 0x0

11:9 FSEL33 FSEL33 - Function Select 33 RW 0x0

8:6 FSEL32 FSEL32 - Function Select 32 RW 0x0

5:3 FSEL31 FSEL31 - Function Select 31 RW 0x0

2:0 FSEL30 FSEL30 - Function Select 30 RW 0x0

GPFSEL4 Register

Table 68. GPIO

Alternate function

select register 4

Bits Name Description Type Reset

31:30 Reserved. - - -

29:27 FSEL49 FSEL49 - Function Select 49

000 = GPIO Pin 49 is an input

001 = GPIO Pin 49 is an output

100 = GPIO Pin 49 takes alternate function 0

101 = GPIO Pin 49 takes alternate function 1

110 = GPIO Pin 49 takes alternate function 2

111 = GPIO Pin 49 takes alternate function 3

011 = GPIO Pin 49 takes alternate function 4

010 = GPIO Pin 49 takes alternate function 5

RW 0x0

26:24 FSEL48 FSEL48 - Function Select 48 RW 0x0

23:21 FSEL47 FSEL47 - Function Select 47 RW 0x0

20:18 FSEL46 FSEL46 - Function Select 46 RW 0x0

17:15 FSEL45 FSEL45 - Function Select 45 RW 0x0

14:12 FSEL44 FSEL44 - Function Select 44 RW 0x0

11:9 FSEL43 FSEL43 - Function Select 43 RW 0x0

8:6 FSEL42 FSEL42 - Function Select 42 RW 0x0

5:3 FSEL41 FSEL41 - Function Select 41 RW 0x0

2:0 FSEL40 FSEL40 - Function Select 40 RW 0x0

GPFSEL5 Register

Table 69. GPIO

Alternate function

select register 5

Bits Name Description Type Reset

31:24 Reserved. - - -

23:21 FSEL57 FSEL57 - Function Select 57

000 = GPIO Pin 57 is an input

001 = GPIO Pin 57 is an output

100 = GPIO Pin 57 takes alternate function 0

101 = GPIO Pin 57 takes alternate function 1

110 = GPIO Pin 57 takes alternate function 2

111 = GPIO Pin 57 takes alternate function 3

011 = GPIO Pin 57 takes alternate function 4

010 = GPIO Pin 57 takes alternate function 5

RW 0x0

20:18 FSEL56 FSEL56 - Function Select 56 RW 0x0

17:15 FSEL55 FSEL55 - Function Select 55 RW 0x0

BCM2711 ARM Peripherals

5.2. Register View 68



Bits Name Description Type Reset

14:12 FSEL54 FSEL54 - Function Select 54 RW 0x0

11:9 FSEL53 FSEL53 - Function Select 53 RW 0x0

8:6 FSEL52 FSEL52 - Function Select 52 RW 0x0

5:3 FSEL51 FSEL51 - Function Select 51 RW 0x0

2:0 FSEL50 FSEL50 - Function Select 50 RW 0x0

GPSET0 Register

Description

The output set registers are used to set a GPIO pin. The SETn field defines the respective GPIO pin to set, writing a “0”

to the field has no effect. If the GPIO pin is being used as an input (by default) then the value in the SETn field is

ignored. However, if the pin is subsequently defined as an output then the bit will be set according to the last set/clear

operation. Separating the set and clear functions removes the need for read-modify-write operations

Table 70. GPIO Output

Set Register 0
Bits Name Description Type Reset

31:0 SETn (n=0..31) 0 = No effect

1 = Set GPIO pin n

WO 0x00000000

GPSET1 Register

Table 71. GPIO Output

Set Register 1
Bits Name Description Type Reset

31:26 Reserved. - - -

25:0 SETn (n=32..57) 0 = No effect

1 = Set GPIO pin n.

WO 0x0000000

GPCLR0 Register

Description

The output clear registers are used to clear a GPIO pin. The CLRn field defines the respective GPIO pin to clear, writing

a “0” to the field has no effect. If the GPIO pin is being used as an input (by default) then the value in the CLRn field is

ignored. However, if the pin is subsequently defined as an output then the bit will be set according to the last set/clear

operation. Separating the set and clear functions removes the need for read-modify-write operations.

Table 72. GPIO Output

Clear Register 0
Bits Name Description Type Reset

31:0 CLRn (n=0..31) 0 = No effect

1 = Clear GPIO pin n

WO 0x00000000

GPCLR1 Register

Table 73. GPIO Output

Clear Register 1
Bits Name Description Type Reset

31:26 Reserved. - - -

25:0 CLRn (n=32..57) 0 = No effect

1 = Clear GPIO pin n

WO 0x0000000

GPLEV0 Register

BCM2711 ARM Peripherals

5.2. Register View 69



Description

The pin level registers return the actual value of the pin. The LEVn field gives the value of the respective GPIO pin.

Table 74. GPIO Level

Register 0
Bits Name Description Type Reset

31:0 LEVn (n=0..31) 0 = GPIO pin n is low

1 = GPIO pin n is high

RO 0x00000000

GPLEV1 Register

Table 75. GPIO Level

Register 1
Bits Name Description Type Reset

31:26 Reserved. - - -

25:0 LEVn (n=32..57) 0 = GPIO pin n is low

1 = GPIO pin n is high

RO 0x0000000

GPEDS0 Register

Description

The event detect status registers are used to record level and edge events on the GPIO pins. The relevant bit in the

event detect status registers is set whenever: 1) an edge is detected that matches the type of edge programmed in

the rising/falling edge detect enable registers, or 2) a level is detected that matches the type of level programmed in

the high/low level detect enable registers. The bit is cleared by writing a “1” to the relevant bit.

The interrupt controller can be programmed to interrupt the processor when any of the status bits are set. The GPIO

peripheral has four dedicated interrupt lines.

Each GPIO bank can generate an independent interrupt. The fourth line generates a single interrupt whenever any bit

is set.

Table 76. GPIO Event

Detect Status Register

0

Bits Name Description Type Reset

31:0 EDSn (n=0..31) 0 = Event not detected on GPIO pin n

1 = Event detected on GPIO pin n

W1C 0x00000000

GPEDS1 Register

Table 77. GPIO Event

Detect Status Register

1

Bits Name Description Type Reset

31:26 Reserved. - - -

25:0 EDSn (n=32..57) 0 = Event not detected on GPIO pin n

1 = Event detected on GPIO pin n

W1C 0x0000000

GPREN0 Register

Description

The rising edge detect enable registers define the pins for which a rising edge transition sets a bit in the event detect

status registers (GPEDSn). When the relevant bits are set in both the GPRENn and GPFENn registers, any transition (1

to 0 and 0 to 1) will set a bit in the GPEDSn registers. The GPRENn registers use synchronous edge detection. This

means the input signal is sampled using the system clock and then it is looking for a “011” pattern on the sampled

signal. This has the effect of suppressing glitches.

BCM2711 ARM Peripherals

5.2. Register View 70



Table 78. GPIO Rising

Edge Detect Status

Register 0

Bits Name Description Type Reset

31:0 RENn (n=0..31) 0 = Rising edge detect disabled on GPIO pin n

1 = Rising edge on GPIO pin n sets corresponding bit in

GPEDS0

RW 0x00000000

GPREN1 Register

Table 79. GPIO Rising

Edge Detect Status

Register 1

Bits Name Description Type Reset

31:26 Reserved. - - -

25:0 RENn (n=32..57) 0 = Rising edge detect disabled on GPIO pin n

1 = Rising edge on GPIO pin n sets corresponding bit in

GPEDS1

RW 0x0000000

GPFEN0 Register

Description

The falling edge detect enable registers define the pins for which a falling edge transition sets a bit in the event detect

status registers (GPEDSn). When the relevant bits are set in both the GPRENn and GPFENn registers, any transition (1

to 0 and 0 to 1) will set a bit in the GPEDSn registers. The GPFENn registers use synchronous edge detection. This

means the input signal is sampled using the system clock and then it is looking for a “100” pattern on the sampled

signal. This has the effect of suppressing glitches.

Table 80. GPIO Falling

Edge Detect Status

Register 0

Bits Name Description Type Reset

31:0 FENn (n=0..31) 0 = Falling edge detect disabled on GPIO pin n

1 = Falling edge on GPIO pin n sets corresponding bit in

GPEDS0

RW 0x00000000

GPFEN1 Register

Table 81. GPIO Falling

Edge Detect Status

Register 1

Bits Name Description Type Reset

31:26 Reserved. - - -

25:0 FENn (n=32..57) 0 = Falling edge detect disabled on GPIO pin n

1 = Falling edge on GPIO pin n sets corresponding bit in

GPEDS1

RW 0x0000000

GPHEN0 Register

Description

The high level detect enable registers define the pins for which a high level sets a bit in the event detect status

register (GPEDSn). If the pin is still high when an attempt is made to clear the status bit in GPEDSn then the status bit

will remain set.

Table 82. GPIO High

Detect Status Register

0

Bits Name Description Type Reset

31:0 HENn (n=0..31) 0 = High detect disabled on GPIO pin n

1 = High on GPIO pin n sets corresponding bit in GPEDS0

RW 0x00000000

GPHEN1 Register

BCM2711 ARM Peripherals

5.2. Register View 71



Table 83. GPIO High

Detect Status Register

1

Bits Name Description Type Reset

31:26 Reserved. - - -

25:0 HENn (n=32..57) 0 = High detect disabled on GPIO pin n

1 = High on GPIO pin n sets corresponding bit in GPEDS1

RW 0x0000000

GPLEN0 Register

Description

The low level detect enable registers define the pins for which a low level sets a bit in the event detect status register

(GPEDSn). If the pin is still low when an attempt is made to clear the status bit in GPEDSn then the status bit will

remain set.

Table 84. GPIO Low

Detect Status Register

0

Bits Name Description Type Reset

31:0 LENn (n=0..31) 0 = Low detect disabled on GPIO pin n

1 = Low on GPIO pin n sets corresponding bit in GPEDS0

RW 0x00000000

GPLEN1 Register

Table 85. GPIO Low

Detect Status Register

1

Bits Name Description Type Reset

31:26 Reserved. - - -

25:0 LENn (n=32..57) 0 = Low detect disabled on GPIO pin n

1 = Low on GPIO pin n sets corresponding bit in GPEDS1

RW 0x0000000

GPAREN0 Register

Description

The asynchronous rising edge detect enable registers define the pins for which an asynchronous rising edge

transition sets a bit in the event detect status registers (GPEDSn).

Asynchronous means the incoming signal is not sampled by the system clock. As such rising edges of very short

duration can be detected.

Table 86. GPIO

Asynchronous rising

Edge Detect Status

Register 0

Bits Name Description Type Reset

31:0 ARENn (n=0..31) 0 = Asynchronous rising edge detect disabled on GPIO pin

n

1 = Asynchronous rising edge on GPIO pin n sets

corresponding bit in GPEDS0

RW 0x00000000

GPAREN1 Register

Table 87. GPIO

Asynchronous rising

Edge Detect Status

Register 1

Bits Name Description Type Reset

31:26 Reserved. - - -

25:0 ARENn (n=32..57) 0 = Asynchronous rising edge detect disabled on GPIO pin

n

1 = Asynchronous rising edge on GPIO pin n sets

corresponding bit in GPEDS1

RW 0x0000000

GPAFEN0 Register

Description

The asynchronous falling edge detect enable registers define the pins for which an asynchronous falling edge

transition sets a bit in the event detect status registers (GPEDSn). Asynchronous means the incoming signal is not

BCM2711 ARM Peripherals

5.2. Register View 72



sampled by the system clock. As such falling edges of very short duration can be detected.

Table 88. GPIO

Asynchronous Falling

Edge Detect Status

Register 0

Bits Name Description Type Reset

31:0 AFENn (n=0..31) 0 = Asynchronous falling edge detect disabled on GPIO pin

n

1 = Asynchronous falling edge on GPIO pin n sets

corresponding bit in GPEDS0

RW 0x00000000

GPAFEN1 Register

Table 89. GPIO

Asynchronous Falling

Edge Detect Status

Register 1

Bits Name Description Type Reset

31:26 Reserved. - - -

25:0 AFENn (n=32..57) 0 = Asynchronous falling edge detect disabled on GPIO pin

n

1 = Asynchronous falling edge on GPIO pin n sets

corresponding bit in GPEDS1

RW 0x0000000

GPIO_PUP_PDN_CNTRL_REG0 Register

Description

The GPIO Pull-up / Pull-down Registers control the actuation of the internal pull-up/down resistors. Reading these

registers gives the current pull-state.

The Alternate function table also has the pull state which is applied after a power down.

Table 90. GPIO Pull-up

/ Pull-down Register 0
Bits Name Description Type Reset

31:30 GPIO_PUP_PDN_C

NTRL15

Resistor Select for GPIO15

00 = No resistor is selected

01 = Pull up resistor is selected

10 = Pull down resistor is selected

11 = Reserved

RW 0x2

29:28 GPIO_PUP_PDN_C

NTRL14

Resistor Select for GPIO14 RW 0x2

27:26 GPIO_PUP_PDN_C

NTRL13

Resistor Select for GPIO13 RW 0x2

25:24 GPIO_PUP_PDN_C

NTRL12

Resistor Select for GPIO12 RW 0x2

23:22 GPIO_PUP_PDN_C

NTRL11

Resistor Select for GPIO11 RW 0x2

21:20 GPIO_PUP_PDN_C

NTRL10

Resistor Select for GPIO10 RW 0x2

19:18 GPIO_PUP_PDN_C

NTRL09

Resistor Select for GPIO09 RW 0x2

17:16 GPIO_PUP_PDN_C

NTRL08

Resistor Select for GPIO08 RW 0x2

15:14 GPIO_PUP_PDN_C

NTRL07

Resistor Select for GPIO07 RW 0x2

13:12 GPIO_PUP_PDN_C

NTRL06

Resistor Select for GPIO06 RW 0x2

BCM2711 ARM Peripherals

5.2. Register View 73



Bits Name Description Type Reset

11:10 GPIO_PUP_PDN_C

NTRL05

Resistor Select for GPIO05 RW 0x2

09:08 GPIO_PUP_PDN_C

NTRL04

Resistor Select for GPIO04 RW 0x2

07:06 GPIO_PUP_PDN_C

NTRL03

Resistor Select for GPIO03 RW 0x2

05:04 GPIO_PUP_PDN_C

NTRL02

Resistor Select for GPIO02 RW 0x2

03:02 GPIO_PUP_PDN_C

NTRL01

Resistor Select for GPIO01 RW 0x2

01:00 GPIO_PUP_PDN_C

NTRL00

Resistor Select for GPIO00 RW 0x2

GPIO_PUP_PDN_CNTRL_REG1 Register

Table 91. GPIO Pull-up

/ Pull-down Register 1
Bits Name Description Type Reset

31:30 GPIO_PUP_PDN_C

NTRL31

Resistor Select for GPIO31

00 = No resistor is selected

01 = Pull up resistor is selected

10 = Pull down resistor is selected

11 = Reserved

RW 0x2

29:28 GPIO_PUP_PDN_C

NTRL30

Resistor Select for GPIO30 RW 0x2

27:26 GPIO_PUP_PDN_C

NTRL29

Resistor Select for GPIO29 RW 0x2

25:24 GPIO_PUP_PDN_C

NTRL28

Resistor Select for GPIO28 RW 0x2

23:22 GPIO_PUP_PDN_C

NTRL27

Resistor Select for GPIO27 RW 0x2

21:20 GPIO_PUP_PDN_C

NTRL26

Resistor Select for GPIO26 RW 0x2

19:18 GPIO_PUP_PDN_C

NTRL25

Resistor Select for GPIO25 RW 0x2

17:16 GPIO_PUP_PDN_C

NTRL24

Resistor Select for GPIO24 RW 0x2

15:14 GPIO_PUP_PDN_C

NTRL23

Resistor Select for GPIO23 RW 0x2

13:12 GPIO_PUP_PDN_C

NTRL22

Resistor Select for GPIO22 RW 0x2

11:10 GPIO_PUP_PDN_C

NTRL21

Resistor Select for GPIO21 RW 0x2

09:08 GPIO_PUP_PDN_C

NTRL20

Resistor Select for GPIO20 RW 0x2

BCM2711 ARM Peripherals

5.2. Register View 74



Bits Name Description Type Reset

07:06 GPIO_PUP_PDN_C

NTRL19

Resistor Select for GPIO19 RW 0x2

05:04 GPIO_PUP_PDN_C

NTRL18

Resistor Select for GPIO18 RW 0x2

03:02 GPIO_PUP_PDN_C

NTRL17

Resistor Select for GPIO17 RW 0x2

01:00 GPIO_PUP_PDN_C

NTRL16

Resistor Select for GPIO16 RW 0x2

GPIO_PUP_PDN_CNTRL_REG2 Register

Table 92. GPIO Pull-up

/ Pull-down Register 2
Bits Name Description Type Reset

31:30 GPIO_PUP_PDN_C

NTRL47

Resistor Select for GPIO47

00 = No resistor is selected

01 = Pull up resistor is selected

10 = Pull down resistor is selected

11 = Reserved

RW 0x2

29:28 GPIO_PUP_PDN_C

NTRL46

Resistor Select for GPIO46 RW 0x2

27:26 GPIO_PUP_PDN_C

NTRL45

Resistor Select for GPIO45 RW 0x2

25:24 GPIO_PUP_PDN_C

NTRL44

Resistor Select for GPIO44 RW 0x2

23:22 GPIO_PUP_PDN_C

NTRL43

Resistor Select for GPIO43 RW 0x2

21:20 GPIO_PUP_PDN_C

NTRL42

Resistor Select for GPIO42 RW 0x2

19:18 GPIO_PUP_PDN_C

NTRL41

Resistor Select for GPIO41 RW 0x2

17:16 GPIO_PUP_PDN_C

NTRL40

Resistor Select for GPIO40 RW 0x2

15:14 GPIO_PUP_PDN_C

NTRL39

Resistor Select for GPIO39 RW 0x2

13:12 GPIO_PUP_PDN_C

NTRL38

Resistor Select for GPIO38 RW 0x2

11:10 GPIO_PUP_PDN_C

NTRL37

Resistor Select for GPIO37 RW 0x2

09:08 GPIO_PUP_PDN_C

NTRL36

Resistor Select for GPIO36 RW 0x2

07:06 GPIO_PUP_PDN_C

NTRL35

Resistor Select for GPIO35 RW 0x2

05:04 GPIO_PUP_PDN_C

NTRL34

Resistor Select for GPIO34 RW 0x2

BCM2711 ARM Peripherals

5.2. Register View 75



Bits Name Description Type Reset

03:02 GPIO_PUP_PDN_C

NTRL33

Resistor Select for GPIO33 RW 0x2

01:00 GPIO_PUP_PDN_C

NTRL32

Resistor Select for GPIO32 RW 0x2

GPIO_PUP_PDN_CNTRL_REG3 Register

Table 93. GPIO Pull-up

/ Pull-down Register 3
Bits Name Description Type Reset

31:20 Reserved. - - -

19:18 GPIO_PUP_PDN_C

NTRL57

Resistor Select for GPIO57

00 = No resistor is selected

01 = Pull up resistor is selected

10 = Pull down resistor is selected

11 = Reserved

RW 0x2

17:16 GPIO_PUP_PDN_C

NTRL56

Resistor Select for GPIO56 RW 0x2

15:14 GPIO_PUP_PDN_C

NTRL55

Resistor Select for GPIO55 RW 0x2

13:12 GPIO_PUP_PDN_C

NTRL54

Resistor Select for GPIO54 RW 0x2

11:10 GPIO_PUP_PDN_C

NTRL53

Resistor Select for GPIO53 RW 0x2

09:08 GPIO_PUP_PDN_C

NTRL52

Resistor Select for GPIO52 RW 0x2

07:06 GPIO_PUP_PDN_C

NTRL51

Resistor Select for GPIO51 RW 0x2

05:04 GPIO_PUP_PDN_C

NTRL50

Resistor Select for GPIO50 RW 0x2

03:02 GPIO_PUP_PDN_C

NTRL49

Resistor Select for GPIO49 RW 0x2

01:00 GPIO_PUP_PDN_C

NTRL48

Resistor Select for GPIO48 RW 0x2

5.3. Alternative Function Assignments

Every GPIO pin can carry an alternate function. Up to 6 alternate functions are available but not every pin has that many

alternate functions. The table below gives a quick overview.

Table 94. GPIO Pins

Alternative Function

Assignment

GPIO Pull ALT0 ALT1 ALT2 ALT3 ALT4 ALT5

GPIO0 High SDA0 SA5 PCLK SPI3_CE0_N TXD2 SDA6

GPIO1 High SCL0 SA4 DE SPI3_MISO RXD2 SCL6

GPIO2 High SDA1 SA3 LCD_VSYNC SPI3_MOSI CTS2 SDA3

GPIO3 High SCL1 SA2 LCD_HSYNC SPI3_SCLK RTS2 SCL3

GPIO4 High GPCLK0 SA1 DPI_D0 SPI4_CE0_N TXD3 SDA3

BCM2711 ARM Peripherals

5.3. Alternative Function Assignments 76



GPIO Pull ALT0 ALT1 ALT2 ALT3 ALT4 ALT5

GPIO5 High GPCLK1 SA0 DPI_D1 SPI4_MISO RXD3 SCL3

GPIO6 High GPCLK2 SOE_N / SE DPI_D2 SPI4_MOSI CTS3 SDA4

GPIO7 High SPI0_CE1_N SWE_N /

SRW_N

DPI_D3 SPI4_SCLK RTS3 SCL4

GPIO8 High SPI0_CE0_N SD0 DPI_D4 BSCSL / CE_N TXD4 SDA4

GPIO9 Low SPI0_MISO SD1 DPI_D5 BSCSL / MISO RXD4 SCL4

GPIO10 Low SPI0_MOSI SD2 DPI_D6 BSCSL SDA /

MOSI

CTS4 SDA5

GPIO11 Low SPI0_SCLK SD3 DPI_D7 BSCSL SCL /

SCLK

RTS4 SCL5

GPIO12 Low PWM0_0 SD4 DPI_D8 SPI5_CE0_N TXD5 SDA5

GPIO13 Low PWM0_1 SD5 DPI_D9 SPI5_MISO RXD5 SCL5

GPIO14 Low TXD0 SD6 DPI_D10 SPI5_MOSI CTS5 TXD1

GPIO15 Low RXD0 SD7 DPI_D11 SPI5_SCLK RTS5 RXD1

GPIO16 Low <reserved> SD8 DPI_D12 CTS0 SPI1_CE2_N CTS1

GPIO17 Low <reserved> SD9 DPI_D13 RTS0 SPI1_CE1_N RTS1

GPIO18 Low PCM_CLK SD10 DPI_D14 SPI6_CE0_N SPI1_CE0_N PWM0_0

GPIO19 Low PCM_FS SD11 DPI_D15 SPI6_MISO SPI1_MISO PWM0_1

GPIO20 Low PCM_DIN SD12 DPI_D16 SPI6_MOSI SPI1_MOSI GPCLK0

GPIO21 Low PCM_DOUT SD13 DPI_D17 SPI6_SCLK SPI1_SCLK GPCLK1

GPIO22 Low SD0_CLK SD14 DPI_D18 SD1_CLK ARM_TRST SDA6

GPIO23 Low SD0_CMD SD15 DPI_D19 SD1_CMD ARM_RTCK SCL6

GPIO24 Low SD0_DAT0 SD16 DPI_D20 SD1_DAT0 ARM_TDO SPI3_CE1_N

GPIO25 Low SD0_DAT1 SD17 DPI_D21 SD1_DAT1 ARM_TCK SPI4_CE1_N

GPIO26 Low SD0_DAT2 <reserved> DPI_D22 SD1_DAT2 ARM_TDI SPI5_CE1_N

GPIO27 Low SD0_DAT3 <reserved> DPI_D23 SD1_DAT3 ARM_TMS SPI6_CE1_N

GPIO28 - SDA0 SA5 PCM_CLK <reserved> MII_A_RX_ERR RGMII_MDIO

GPIO29 - SCL0 SA4 PCM_FS <reserved> MII_A_TX_ERR RGMII_MDC

GPIO30 Low <reserved> SA3 PCM_DIN CTS0 MII_A_CRS CTS1

GPIO31 Low <reserved> SA2 PCM_DOUT RTS0 MII_A_COL RTS1

GPIO32 Low GPCLK0 SA1 <reserved> TXD0 SD_CARD_PRE

S

TXD1

GPIO33 Low <reserved> SA0 <reserved> RXD0 SD_CARD_WR

PROT

RXD1

GPIO34 High GPCLK0 SOE_N / SE <reserved> SD1_CLK SD_CARD_LED RGMII_IRQ

GPIO35 High SPI0_CE1_N SWE_N /

SRW_N

SD1_CMD RGMII_START_

STOP

GPIO36 High SPI0_CE0_N SD0 TXD0 SD1_DAT0 RGMII_RX_OK MII_A_RX_ERR

BCM2711 ARM Peripherals

5.3. Alternative Function Assignments 77



GPIO Pull ALT0 ALT1 ALT2 ALT3 ALT4 ALT5

GPIO37 Low SPI0_MISO SD1 RXD0 SD1_DAT1 RGMII_MDIO MII_A_TX_ERR

GPIO38 Low SPI0_MOSI SD2 RTS0 SD1_DAT2 RGMII_MDC MII_A_CRS

GPIO39 Low SPI0_SCLK SD3 CTS0 SD1_DAT3 RGMII_IRQ MII_A_COL

GPIO40 Low PWM1_0 SD4 SD1_DAT4 SPI0_MISO TXD1

GPIO41 Low PWM1_1 SD5 <reserved> SD1_DAT5 SPI0_MOSI RXD1

GPIO42 Low GPCLK1 SD6 <reserved> SD1_DAT6 SPI0_SCLK RTS1

GPIO43 Low GPCLK2 SD7 <reserved> SD1_DAT7 SPI0_CE0_N CTS1

GPIO44 - GPCLK1 SDA0 SDA1 <reserved> SPI0_CE1_N SD_CARD_VOL

T

GPIO45 - PWM0_1 SCL0 SCL1 <reserved> SPI0_CE2_N SD_CARD_PW

R0

GPIO46 High <Internal>

GPIO47 High <Internal>

GPIO48 High <Internal>

GPIO49 High <Internal>

GPIO50 High <Internal>

GPIO51 High <Internal>

GPIO52 High <Internal>

GPIO53 High <Internal>

GPIO54 High <Internal>

GPIO55 High <Internal>

GPIO56 High <Internal>

GPIO57 High <Internal>

Entries which are white should not be used. These may have unexpected results as some of these have special functions

used in test mode e.g. they may drive the output with high frequency signals.

Special function legend:

Table 95. GPIO Pins

Alternative Function

Legend

Name Function See section

SDA0 BSCa master 0 data line BSC

SCL0 BSC master 0 clock line BSC

SDAx BSC master 1,3,4,5,6b data line BSC

SCLx BSC master 1,3,4,5,6 clock line BSC

GPCLKx General purpose Clock 0,1,2 General Purpose GPIO Clocks

SPIx_CE2_N SPI 0,3,4,5,6 Chip select 2 SPI

SPIx_CE1_N SPI 0,3,4,5,6 Chip select 1 SPI

SPIx_CE0_N SPI 0,3,4,5,6 Chip select 0 SPI

SPIx_MISO SPI 0,3,4,5,6 MISO SPI

BCM2711 ARM Peripherals

5.3. Alternative Function Assignments 78



Name Function See section

SPIx_MOSI SPI 0,3,4,5,6 MOSI SPI

SPIx_SCLK SPI 0,3,4,5,6 Serial clock SPI

PWMx_0 PWM 0,1 channel 0 Pulse Width Modulator

PWMx_1 PWM 0,1 channel 1 Pulse Width Modulator

TXDx UART 0,2,3,4,5 Transmit Data UART

RXDx UART 0,2,3,4,5 Receive Data UART

CTSx UART 0,2,3,4,5 Clear To Send UART

RTSx UART 0,2,3,4,5 Request To Send UART

PCM_CLK PCM clock PCM Audio

PCM_FS PCM Frame Sync PCM Audio

PCM_DIN PCM Data in PCM Audio

PCM_DOUT PCM data out PCM Audio

SAx Secondary mem Address bus Secondary Memory Interface

SOE_N / SE Secondary mem. Controls Secondary Memory Interface

SWE_N / SRW_N Secondary mem. Controls Secondary Memory Interface

SDx Secondary mem. data bus Secondary Memory Interface

BSCSL SDA / MOSI BSC slave Data, SPI slave MOSI BSC/SPI slave

BSCSL SCL / SCLK BSC slave Clock, SPI slave clock BSC/SPI slave

BSCSL - / MISO BSC <not used>, SPI MISO BSC/SPI slave

BSCSL - / CE_N BSC <not used>, SPI CSn BSC/SPI slave

SPI1_CE2_N SPI 1c Chip select 2 Auxiliary I/O

SPI1_CE1_N SPI 1 Chip select 1 Auxiliary I/O

SPI1_CE0_N SPI 1 Chip select 0 Auxiliary I/O

SPI1_MISO SPI 1 MISO Auxiliary I/O

SPI1_MOSI SPI 1 MOSI Auxiliary I/O

SPI1_SCLK SPI 1 Serial clock Auxiliary I/O

TXD1 UART 1 Transmit Data Auxiliary I/O

RXD1 UART 1 Receive Data Auxiliary I/O

CTS1 UART 1 Clear To Send Auxiliary I/O

RTS1 UART 1 Request To Send Auxiliary I/O

ARM_TRST ARM JTAG reset <TBD>

ARM_RTCK ARM JTAG return clock <TBD>

ARM_TDO ARM JTAG Data out <TBD>

ARM_TCK ARM JTAG Clock <TBD>

ARM_TDI ARM JTAG Data in <TBD>

ARM_TMS ARM JTAG Mode select <TBD>

BCM2711 ARM Peripherals

5.3. Alternative Function Assignments 79



Name Function See section

PCLK Display Parallel Interface <TBD>

DE Display Parallel Interface <TBD>

LCD_VSYNC Display Parallel Interface <TBD>

LCD_HSYNC Display Parallel Interface <TBD>

DPI_Dx Display Parallel Interface <TBD>

a The Broadcom Serial Control bus is a proprietary bus compliant with the Philips® I2C bus/interface

b BSC master 2 & 7 are not user-accessible

c SPI 2 is not user-accessible

5.4. General Purpose GPIO Clocks

The General Purpose clocks can be output to GPIO pins. They run from the peripherals clock sources and use clock

generators with noise-shaping MASH dividers. These allow the GPIO clocks to be used to drive audio devices. The

fractional divider operates by periodically dropping source clock pulses, therefore the output frequency will periodically

switch between:

and

Jitter is therefore reduced by increasing the source clock frequency. In applications where jitter is a concern, the fastest

available clock source should be used.

The General Purpose clocks have MASH noise-shaping dividers which push this fractional divider jitter out of the audio

band.

MASH noise-shaping is incorporated to push the fractional divider jitter out of the audio band if required. The MASH can

be programmed for 1, 2 or 3-stage filtering. When using the MASH filter, the frequency is spread around the requested

frequency and the user must ensure that the module is not exposed to frequencies higher than 25MHz. Also, the MASH

filter imposes a low limit on the range of DIVI.

Table 96. Effect of

MASH Filter on

Frequency

MASH min DIVI min output freq average output freq max output freq

0 (int divide) 1 source / ( DIVI ) source / ( DIVI ) source / ( DIVI )

1 2 source / ( DIVI + 1 ) source / ( DIVI + DIVF / 1024 ) source / ( DIVI )

2 3 source / ( DIVI + 2 ) source / ( DIVI + DIVF / 1024 ) source / ( DIVI - 1 )

3 5 source / ( DIVI + 4 ) source / ( DIVI + DIVF / 1024 ) source / ( DIVI - 3 )

The following example illustrates the spreading of output clock frequency resulting from the use of the MASH filter. Note

that the spread is greater for lower divisors.

Table 97. Example of

Frequency Spread

when using MASH

Filtering

PLL freq

(MHz)

target freq

(MHz)

MASH divisor DIVI DIVF min freq

(MHz)

ave freq

(MHz)

max freq

(MHz)

error

650 18.32 0 35.480 35 492 18.57 18.57 18.57 ok

650 18.32 1 35.480 35 492 18.06 18.32 18.57 ok

650 18.32 2 35.480 35 492 17.57 18.32 19.12 ok

BCM2711 ARM Peripherals

5.4. General Purpose GPIO Clocks 80



PLL freq

(MHz)

target freq

(MHz)

MASH divisor DIVI DIVF min freq

(MHz)

ave freq

(MHz)

max freq

(MHz)

error

650 18.32 3 35.480 35 492 16.67 18.32 20.31 ok

400 18.32 0 21.834 21 854 19.05 19.05 19.05 ok

400 18.32 1 21.834 21 854 18.18 18.32 19.05 ok

400 18.32 2 21.834 21 854 17.39 18.32 20.00 ok

400 18.32 3 21.834 21 854 16.00 18.32 22.22 ok

200 18.32 0 10.917 10 939 20.00 20.00 20.00 ok

200 18.32 1 10.917 10 939 18.18 18.32 20.00 ok

200 18.32 2 10.917 10 939 16.67 18.32 22.22 ok

200 18.32 3 10.917 10 939 14.29 18.32 28.57 error

It is beyond the scope of this specification to describe the operation of a MASH filter or to determine under what

conditions the available levels of filtering are beneficial.

5.4.1. Operating Frequency

The maximum operating frequency of the General Purpose clocks is ~125MHz at 1.2V but this will be reduced if the GPIO

pins are heavily loaded or have a capacitive load.

5.4.2. Register Definitions

The General Purpose clocks register base address is 0x7e101000.

Table 98. General

Purpose Clocks

Registers

Offset Name Description

0x70 CM_GP0CTL Clock Manager General Purpose Clocks Control

0x74 CM_GP0DIV Clock Manager General Purpose Clock Divisors

0x78 CM_GP1CTL Clock Manager General Purpose Clocks Control

0x7c CM_GP1DIV Clock Manager General Purpose Clock Divisors

0x80 CM_GP2CTL Clock Manager General Purpose Clocks Control

0x84 CM_GP2DIV Clock Manager General Purpose Clock Divisors

CM_GP0CTL, CM_GP1CTL, CM_GP2CTL Registers

Table 99. General

Purpose Clocks

Control

Bits Name Description Type Reset

31:24 PASSWD Clock Manager password "5a" WO 0x00

23:11 Reserved. - - -

10:9 MASH MASH control

0 = integer division

1 = 1-stage MASH (equivalent to non-MASH dividers)

2 = 2-stage MASH

3 = 3-stage MASH

To avoid lock-ups and glitches do not change this control

while BUSY=1 and do not change this control at the same

time as asserting ENAB.

RW 0x0

BCM2711 ARM Peripherals

5.4. General Purpose GPIO Clocks 81



Bits Name Description Type Reset

8 FLIP Invert the clock generator output

This is intended for use in test/debug only. Switching this

control will generate an edge on the clock generator output.

To avoid output glitches do not switch this control while

BUSY=1.

RW 0x0

7 BUSY Clock generator is running

Indicates the clock generator is running. To avoid glitches

and lock-ups, clock sources and setups must not be

changed while this flag is set.

RO 0x0

6 Reserved. - - -

5 KILL Kill the clock generator

0 = no action

1 = stop and reset the clock generator

This is intended for test/debug only. Using this control may

cause a glitch on the clock generator output.

RW 0x0

4 ENAB Enable the clock generator

This requests the clock to start or stop without glitches.

The output clock will not stop immediately because the

cycle must be allowed to complete to avoid glitches. The

BUSY flag will go low when the final cycle is completed.

RW 0x0

3:0 SRC Clock source

0 = GND

1 = oscillator

2 = testdebug0

3 = testdebug1

4 = PLLA per

5 = PLLC per

6 = PLLD per

7 = HDMI auxiliary

8-15 = GND

To avoid lock-ups and glitches do not change this control

while BUSY=1 and do not change this control at the same

time as asserting ENAB.

RW 0x0

CM_GP0DIV, CM_GP1DIV, CM_GP2DIV Registers

Table 100. General

Purpose Clock

Divisors

Bits Name Description Type Reset

31:24 PASSWD Clock Manager password "5a" WO 0x00

23:12 DIVI Integer part of divisor

This value has a minimum limit determined by the MASH

setting. See text for details. To avoid lock-ups and glitches

do not change this control while BUSY=1.

RW 0x000

11:0 DIVF Fractional part of divisor

To avoid lock-ups and glitches do not change this control

while BUSY=1.

RW 0x000

BCM2711 ARM Peripherals

5.4. General Purpose GPIO Clocks 82



Chapter 6. Interrupts

6.1. Overview

The BCM2711 has a large number of interrupts from various sources, and a choice of two interrupt controllers. The GIC-

400 interrupt controller is selected by default, but the legacy interrupt controller can be selected with a setting in

config.txt - refer to raspberrypi.org documentation for further details.

In Figure 5 the orange boxes illustrate the various interrupt source blocks, the blue box covers the interrupt controller

routing (explained later), and the green box shows the final interrupt destinations. The number underneath each slash

through the thick arrows indicates how many signals that arrow contains (thin arrows without a number only contain one

signal). The "ARM Core n" blocks in orange are actually the same as the "ARM Core n" blocks in green, they’re just drawn

as separate source and destination blocks for clarity. ARM_LOCAL and ARMC are different hardware blocks within the

chip, each with their own set of registers; ARMC is visible to both the VPU and CPU, but ARM_LOCAL is only visible to the

CPU (and corresponds to the "ARM Local peripherals" in Chapter 1).

ETH_PCIe

IRQ routing

VideoCore

ARMC

ARM_LOCAL

ARM Core n
(repeated 4 times)

57

64

16

19

5

PS timer IRQ
PNS timer IRQ
HP timer IRQ
V timer IRQ
PMU IRQ

16 ARM Mailbox IRQs
AXIERR IRQ
Local timer IRQ
AXI_QUIET IRQ

Timer IRQ
Mailbox IRQ
Doorbell 0 IRQ
Doorbell 1 IRQ
VPU0 halt IRQ
VPU1 halt IRQ
ARM address error IRQ
ARM AXI error IRQ
8 software IRQs

1 secure IRQ
57 L2 IRQs

62 VC peripheral IRQs 62

20

ARM Core n
(repeated 4 times)

2

FIQ
IRQ

8
FIQn/IRQn

Figure 5. Interrupt

sources and

destinations

The final output from each interrupt controller is 8 separate signals - a FIQ (Fast Interrupt reQuest) and an IRQ (Interrupt

ReQuest) for each of the 4 ARM cores, i.e. FIQ0 and IRQ0 connected to ARM core 0, FIQ1 and IRQ1 connected to ARM

core 1, FIQ2 and IRQ2 connected to ARM core 2, and FIQ3 and IRQ3 connected to ARM core 3. For convenience, this

document will refer to those 8 signals as FIQn/IRQn.

To avoid confusion, note that the "ARM Mailbox IRQs" in the ARM_LOCAL block are different from the "Mailbox IRQ" in the

ARMC block. Similarly, the "Local timer IRQ" in the ARM_LOCAL block is different to the "Timer IRQ" in the ARMC block,

which are both different from the 4 timer IRQs in the "ARM Core n" block. The "AXIERR IRQ" in the ARM_LOCAL block is

also different from the "ARM AXI error IRQ" in the ARMC block.

BCM2711 ARM Peripherals

6.1. Overview 83

https://www.raspberrypi.org/documentation/configuration/config-txt/boot.md


6.2. Interrupt sources

6.2.1. ARM Core n interrupts

Each of the ARM Cores can raise a Secure Physical (PS) timer interrupt, a Non-Secure Physical (PNS) timer interrupt, a

Hypervisor (HP) timer interrupt, a Virtual (V) timer interrupt and a Performance Monitoring Unit (PMU) interrupt. For more

information, please refer to the ARM Cortex-A72 documentation on the ARM Developer website.

6.2.2. ARM_LOCAL interrupts

Further information about the ARM Mailboxes can be found in Chapter 13. The AXIERR output is asserted by the ARM’s

L2 cache if an error response is received. Further information about the Local Timer and AXI_QUIET can be found in the

Registers section of this chapter.

6.2.3. ARMC interrupts

Table 101. ARMC

peripheral IRQs
# IRQ

0 Timer

1 Mailbox

2 Doorbell 0

3 Doorbell 1

4 VPU0 halted

5 VPU1 halted

6 ARM address error

7 ARM AXI error

8 Software Interrupt 0

9 Software Interrupt 1

10 Software Interrupt 2

11 Software Interrupt 3

12 Software Interrupt 4

13 Software Interrupt 5

14 Software Interrupt 6

15 Software Interrupt 7

The Timer interrupt in Table 101 comes from the "Timer (ARM side)" described in Chapter 12.

The eight general-purpose software interrupts can be set by writing to the SWIRQ_SET register and cleared by writing to

the SWIRQ_CLEAR register.

6.2.4. VideoCore interrupts

Table 102. VC

peripheral IRQs
# IRQ 0-15 # IRQ 16-31 # IRQ 32-47 # IRQ 48-63

0 Timer 0 16 DMA 0 32 HDMI CEC 48 SMI

1 Timer 1 17 DMA 1 33 HVS 49 GPIO 0

BCM2711 ARM Peripherals

6.2. Interrupt sources 84

https://developer.arm.com/docs/


# IRQ 0-15 # IRQ 16-31 # IRQ 32-47 # IRQ 48-63

2 Timer 2 18 DMA 2 34 RPIVID 50 GPIO 1

3 Timer 3 19 DMA 3 35 SDC 51 GPIO 2

4 H264 0 20 DMA 4 36 DSI 0 52 GPIO 3

5 H264 1 21 DMA 5 37 Pixel Valve 2 53 OR of all I2C

6 H264 2 22 DMA 6 38 Camera 0 54 OR of all SPI

7 JPEG 23 DMA 7 & 8 39 Camera 1 55 PCM/I2S

8 ISP 24 DMA 9 & 10 40 HDMI 0 56 SDHOST

9 USB 25 DMA 11 41 HDMI 1 57 OR of all PL011

UART

10 V3D 26 DMA 12 42 Pixel Valve 3 58 OR of all ETH_PCIe

L2

11 Transposer 27 DMA 13 43 SPI/BSC Slave 59 VEC

12 Multicore Sync 0 28 DMA 14 44 DSI 1 60 CPG

13 MultiCore Sync 1 29 AUX 45 Pixel Valve 0 61 RNG

14 MultiCore Sync 2 30 ARM 46 Pixel Valve 1 & 4 62 EMMC & EMMC2

15 MultiCore Sync 3 31 DMA 15 47 CPR 63 ETH_PCIe secure

The 4 timer interrupts in Table 102 come from the "System Timer" described in Chapter 10.

Because there are more peripherals than available VC peripheral IRQs, some of the VC peripheral interrupts (highlighted in

bold in Table 102) are the OR-ed version of multiple peripheral interrupts.

The per-peripheral interrupt statuses for VC peripheral IRQs 29, 53, 54 & 57 can in turn be read from the AUX_IRQ

(documented in Chapter 2) and PACTL_CS (at address 0x7E20 4E00) registers. Figure 6 shows how this is logically

connected, with the vertically-aligned numbers inside the grey boxes indicating bit-positions within the registers.

BCM2711 ARM Peripherals

6.2. Interrupt sources 85



AUX_IRQ

PACTL_CS

SPI0 IRQ

SPI1 IRQ

SPI2 IRQ

SPI3 IRQ

I2C2 IRQ

I2C3 IRQ

I2C4 IRQ

0

1

2

3

10

11

12

SPI4 IRQ

SPI5 IRQ

SPI6 IRQ

I2C0 IRQ

4

5

6

8

5

I2C1 IRQ 9

I2C5 IRQ 13

I2C6 IRQ 14

I2C7 IRQ 15

UART5 IRQ 16

UART4 IRQ 17

UART3 IRQ 18

UART2 IRQ 19

UART0 IRQ 20

8

5

VC peripheral IRQs

54

53

57

UART1 IRQ

3
29

0

1

2

Figure 6. Peripheral

IRQ OR-ing

For example if VC peripheral IRQ 53 is triggered, then you know at least one of the I2C peripherals has caused an

interrupt. To find out exactly which I2C peripherals have interrupts pending, you can read bits 8 to 15 inclusive of

PACTL_CS (alternatively, you could simply read the Status register for each of the I2C peripherals).

There are also some VC peripheral interrupts (23, 24, 46 and 62) that are an OR-ed version of two peripheral interrupt

signals - if these interrupts are received the only option is to read the status register for each of the peripherals concerned.

6.2.5. ETH_PCIe interrupts

Table 103. ETH_PCIe

L2 IRQs
# IRQ

9 AVS

15 PCIE_0_INTA

16 PCIE_0_INTB

17 PCIE_0_INTC

18 PCIE_0_INTD

20 PCIE_0_MSI

29 GENET_0_A

30 GENET_0_B

48 USB0_XHCI_0

Any IRQ numbers not listed in the table above are reserved.

BCM2711 ARM Peripherals

6.2. Interrupt sources 86



The secure IRQ output (which is only useful for the VPU and not the CPU) from the ETH_PCIe block is routed to VC

peripheral IRQ 63, and all 57 ETH_PCIe L2 IRQs are OR-ed together and routed to VC peripheral IRQ 58 - see Figure 5 and

Table 102.

Note that the 57 individual ETH_PCIe interrupts aren’t routed to the legacy interrupt controller, only VC peripheral IRQ 58

(the OR-ed version) is available.

6.3. GIC-400 interrupt controller

The BCM2711 contains an ARM GIC-400 interrupt controller, which is enabled by default. For more information, please

refer to the ARM GIC-400 documentation on the ARM Developer website.

Figure 7 shows how the interrupt sources described earlier are connected to the GIC. When the GIC-400 is selected as the

interrupt controller, the eight "GIC FIQn/IRQn" outputs are routed to the FIQn/IRQn inputs of the ARM cores.

Note that even when the GIC-400 is selected as the interrupt controller, the outputs of the legacy interrupt controller

(described later) are available as PPIs within the GIC.

GIC-400

Core 3 PMU IRQ

ARM Mailbox IRQs SPI IDs 32-47

SPI ID 51

AXIERR IRQ SPI ID 52

Local timer IRQ SPI ID 53

Legacy FIQn PPI ID 28

Legacy IRQn PPI ID 31

Core n PS timer IRQ

Core n PNS timer IRQ

Core n HP timer IRQ

Core n V timer IRQ PPI ID 27

PPI ID 26

PPI ID 30

PPI ID 29

ARMC peripheral IRQs SPI IDs 64-79

VC peripheral IRQs SPI IDs 96-159

ETH_PCIe L2 IRQs SPI IDs 160-216

GIC FIQn/IRQn

Core 2 PMU IRQ SPI ID 50

Core 1 PMU IRQ SPI ID 49

Core 0 PMU IRQ SPI ID 48 8
16

16

64

57

(repeated 4 times)

Figure 7. GIC IRQ

routing

The GIC-400 also connects to the VFIQ (Virtual FIQ) and VIRQ (Virtual IRQ) input of each ARM core, but for brevity these

signals are not shown here.

BCM2711 ARM Peripherals

6.3. GIC-400 interrupt controller 87

https://developer.arm.com/docs/


6.4. Legacy interrupt controller

The legacy interrupt controller in the BCM2711 has some similarities with the interrupt controllers used in earlier

BCM283x chips, but also several differences. When the legacy interrupt controller is selected, the eight "Legacy FIQn/IRQ

n" outputs (shown in Figure 9) are routed to the FIQn/IRQn inputs of the ARM cores.

ARM_LOCAL routing

per-core routing
(repeated 4 times)

Core n
Mailbox IRQ 0

Core n
Mailbox IRQ 2

Core n
Mailbox IRQ 3

Core n
PS timer IRQ

Core n
PNS timer IRQ

Core n
HP timer IRQ

Core n
V timer IRQ

Core n
PMU IRQ

Core n
Mailbox IRQ 1

ARMC routing
(repeated 8 times)

VC peripheral IRQ 0

ARMC peripheral IRQ 15

VC peripheral IRQ 63
… etc. ...

… etc. ...
ARMC peripheral IRQ 0

Local timer IRQ

one of the 8 Masked FIQn/IRQn Status

one of the 8 Masked FIQn/IRQn Status

AXIERR IRQ

AXI_QUIET IRQ

Mailbox IRQs for Core 0ARM Mailbox IRQs 0-3

Mailbox IRQs for Core 1ARM Mailbox IRQs 4-7

Mailbox IRQs for Core 2ARM Mailbox IRQs 8-11

Mailbox IRQs for Core 3ARM Mailbox IRQs 12-15

ARM Core IRQs

4

4

4

4

20

Masked FIQn Status
Masked IRQn Status

Masked FIQn Status
Masked IRQn Status

Masked FIQn Status
Masked IRQn Status

Masked FIQn Status
Masked IRQn Status

Masked FIQn Status
Masked IRQn Status

Masked FIQn Status
Masked IRQn Status

Masked FIQn Status
Masked IRQn Status

Masked FIQn Status
Masked IRQn Status

Masked FIQn Status
Masked IRQn Status

Masked IRQ0 Status

Masked FIQn/IRQn Status

4

4

4

4

Masked FIQn/IRQn Status

Masked FIQn/IRQn Status

Masked FIQn/IRQn Status

16

5

4

Figure 8. Legacy IRQ

routing

The interrupts coming directly from each of the ARM cores (PS timer, PNS timer, HP timer, V timer and PMU) can only be

routed to either the FIQ or IRQ of the core from which they originate. For example the PS timer and PMU IRQs from core 3

could be routed to FIQ3 and the PNS timer IRQ from core 2 could be routed to IRQ2. The masking of the ARM timer IRQs

is controlled by the 4 TIMER_CNTRL registers (one for each core) and the masking of the PMU IRQs is controlled by the

PMU_CONTROL_SET and PMU_CONTROL_CLR registers.

The sixteen ARM Mailbox interrupts are allocated so that four go to each core - ARM Mailbox IRQs 0 to 3 are routed to the

four Mailbox IRQs on ARM core 0, and ARM Mailbox IRQs 12 to 15 are routed to the four Mailbox IRQs on ARM core 3, i.e.

ARM Mailbox IRQ 13 appears to ARM Core 3 as Mailbox IRQ 1. Like the ARM Core interrupts, the ARM Mailbox IRQs can

only be routed to the FIQ or IRQ of the core for which they are intended, for example the Mailbox 4 and 5 IRQs could be

routed to FIQ1 and the Mailbox 10 IRQ could be routed to IRQ2. The masking of the ARM Mailbox IRQs is controlled by the

four MAILBOX_CNTRL registers (one for each core).

The AXI_QUIET IRQ is only available to the IRQ input on ARM core 0, and its masking is controlled by the AXI_QUIET_TIME

register.

The Local timer and AXIERR IRQs can be routed to any one of the 8 FIQn/IRQn signals.

The masking of the Local timer IRQ is controlled by the LOCAL_TIMER_CONTROL and PERI_IRQ_ROUTE0 registers.

The masking of the AXIERR IRQ is controlled by the ARM_CONTROL and CORE_IRQ_CONTROL registers.

The unmasked inputs to the "ARMC routing" block are readable from the IRQ_STATUS0, IRQ_STATUS1 and IRQ_STATUS2

BCM2711 ARM Peripherals

6.4. Legacy interrupt controller 88



registers.

The masking within the "ARMC routing" block is controlled by the SET_EN_0, SET_EN_1, SET_EN_2, CLR_EN_0, CLR_EN_1

and CLR_EN_2 registers. Each of these registers is repeated for each of the eight FIQn/IRQn signals (48 registers in total).

Once the interrupts have been masked and routed, their statuses can be read from the 3 PENDING and 1 SOURCE

registers (repeated 8 times for each of the FIQn/IRQn signals, for a total of 32 registers).

Masked FIQn/IRQn Status
(repeated 8 times)

ARM_LOCAL status registersARMC status registers

FIQn/IRQn_PENDING2

FIQn/IRQn_PENDING1

Masked VC peripheral 32-63

Masked ARMC peripheral 0-15

0..31
32

0..15

31

18

25

FIQn/IRQn_PENDING0

Masked VC peripheral 0-31 0..31
32

24

32

32

16

FIQ/IRQ_SOURCEn

Masked PS timer

Masked PNS timer

Masked HP timer

Masked V timer

Masked PMU

Masked AXI_QUIET
(for IRQ0 only)

Masked Local timer

Masked AXIERR

0

1

2

3

8

9

10

11

30

Masked Mailbox 0

Masked Mailbox 1

Masked Mailbox 2

Masked Mailbox 3

4

5

6

7 13

Legacy FIQn/IRQn

1

8

Figure 9. Legacy IRQ

status registers

These are "nested" status registers, which means if bit 8 in the SOURCE register is set, you also need to read PENDING2 to

see which bits are set there. If bit 24 in the PENDING2 register is set, then you also need to read PENDING0 to see which

bits there are set.

As a more complete example, if the interrupt routing and masking is set up so that an interrupt from UART4 triggers a FIQ

interrupt to ARM Core 3, the sequence (on ARM Core 3) would be:

1. Enter FIQ handler

2. Read FIQ_SOURCE3

3. Find that FIQ_SOURCE3[8] is set, so read FIQ3_PENDING2

4. Find that FIQ3_PENDING2[25] is set, so read FIQ3_PENDING1

5. Find that FIQ3_PENDING1[25] (i.e. VC peripheral IRQ 57) is set, so read PACTL_CS[20:16] (see Figure 6) to see which

UART triggered it

6. Find that PACTL_CS[17] is set, so read UART4_MIS to (finally) determine what caused the interrupt

6.5. Registers

To allow atomic operations (where only particular bits are modified, without modifying any of the other bits in the

register), some registers are split into a write-set register and a write-clear register.

A write-set register allows you to set particular bits high (change them to 1). You set a bit high by writing a '1' to its bit-

position - bits that were low get changed to high, and bits that were already high remain high. Any bit-positions written

with a '0' retain their previous value.

Old bit value Write bit value Result bit value

0 0 0

0 1 1

1 0 1

1 1 1

BCM2711 ARM Peripherals

6.5. Registers 89



Thus writing 0xFC060014 to a write-set register containing 0x30840008 changes it to 0xFC86001C.

A write-clear register allows you to set particular bits low (change them to 0). You set a bit low by writing a '1' to its bit-

position - bits that were low remain low, and bits that were high get changed to low. Any bit-positions written with a '0'

retain their previous value. Note that you write a one to change a bit to zero!

Old bit value Write bit value Result bit value

0 0 0

0 1 0

1 0 1

1 1 0

Thus writing 0xFC060014 to a write-clear register containing 0x30840008 changes it to 0x00800008.

6.5.1. GIC-400

The base address of the GIC-400 is 0x4c0040000. Note that, unlike other peripheral addresses in this document, this is an

ARM-only address and not a legacy master address. If Low Peripheral mode is enabled this base address becomes

0xff840000.

The GIC-400 is configured with "NUM_CPUS=4" and "NUM_SPIS=192". For full register details, please refer to the ARM

GIC-400 documentation on the ARM Developer website.

6.5.2. ARM_LOCAL

The ARM_LOCAL register base address is 0x4c0000000. Note that, unlike other peripheral addresses in this document, this

is an ARM-only address and not a legacy master address. If Low Peripheral mode is enabled this base address becomes

0xff800000.

The PMU_CONTROL_SET / PMU_CONTROL_CLR registers are write-set / write-clear registers as described earlier.

Table 104.

ARM_LOCAL Interrupt

Registers

Offset Name Description

0x00 ARM_CONTROL ARM Timer and AXI Error IRQ control

0x0c CORE_IRQ_CONTROL VideoCore Interrupt Control

0x10 PMU_CONTROL_SET PMU Bit Set

0x14 PMU_CONTROL_CLR PMU Bit Clear

0x24 PERI_IRQ_ROUTE0 Peripheral Interrupt Routing (Bank 0)

0x30 AXI_QUIET_TIME AXI Outstanding Transaction Time and IRQ Control

0x34 LOCAL_TIMER_CONTROL Local Timer Control

0x38 LOCAL_TIMER_IRQ Local Timer Reload and Interrupt

0x40 TIMER_CNTRL0 Timer Interrupt Control for ARM Core 0

0x44 TIMER_CNTRL1 Timer Interrupt Control for ARM Core 1

0x48 TIMER_CNTRL2 Timer Interrupt Control for ARM Core 2

0x4c TIMER_CNTRL3 Timer Interrupt Control for ARM Core 3

0x50 MAILBOX_CNTRL0 Mailbox Interrupt Control for ARM Core 0

0x54 MAILBOX_CNTRL1 Mailbox Interrupt Control for ARM Core 1

0x58 MAILBOX_CNTRL2 Mailbox Interrupt Control for ARM Core 2

BCM2711 ARM Peripherals

6.5. Registers 90

https://developer.arm.com/docs/


Offset Name Description

0x5c MAILBOX_CNTRL3 Mailbox Interrupt Control for ARM Core 3

0x60 IRQ_SOURCE0 IRQ Source flags for ARM Core 0

0x64 IRQ_SOURCE1 IRQ Source flags for ARM Core 1

0x68 IRQ_SOURCE2 IRQ Source flags for ARM Core 2

0x6c IRQ_SOURCE3 IRQ Source flags for ARM Core 3

0x70 FIQ_SOURCE0 FIQ Source flags for ARM Core 0

0x74 FIQ_SOURCE1 FIQ Source flags for ARM Core 1

0x78 FIQ_SOURCE2 FIQ Source flags for ARM Core 2

0x7c FIQ_SOURCE3 FIQ Source flags for ARM Core 3

ARM_CONTROL Register

Description

Main Timer and AXI Error Control.

Table 105.

ARM_CONTROL

Register

Bits Name Description Type Reset

31:9 Reserved. - - -

08 TIMER_INCREME

NT

Main timer increment value selection

The main timer (driving the ARM core 'global system

counter') is incremented by this amount each time the

prescaler output is asserted. The ability to set the

increment value to two allows the main timer to count ARM

core clock cycles in the case where the AXI/APB clock

frequency is half of the ARM core clock frequency and the

prescaler ratio is unity.

1 = increment count by two.

0 = increment count by one.

RW 0x0

07 PROC_CLK_TIMER Main timer clock selection

The main timer (driving the ARM core 'global system

counter') may be driven either from the fast but variable

AXI/APB bus clock or from the fixed-frequency but slower

crystal reference clock.

1 = select AXI/APB clock.

0 = select crystal clock.

RW 0x0

06 AXIERRIRQ_EN When set to '1', this bit masks the AXI Error interrupt. An

AXI error output is asserted by the ARM’s L2 cache if an

error response is received. If not masked, this causes an

interrupt to be raised. If this bit is set, the interrupt is not

raised.

Interrupt routing for this is controlled by the AXI_ERR_CORE

field in the CORE_IRQ_CONTROL register.

RW 0x0

5:0 Reserved. - - -

CORE_IRQ_CONTROL Register

BCM2711 ARM Peripherals

6.5. Registers 91



Description

VideoCore Interrupt Routing Control

Table 106.

CORE_IRQ_CONTROL

Register

Bits Name Description Type Reset

31:7 Reserved. - - -

06:04 AXI_ERR_CORE Controls to which ARM core interrupt request pin the

external error interrupt request signal from the ARM L2

cache is routed.

This interrupt is enabled in the AXIERRIRQ_EN field in the

ARM_CONTROL register.

0 = CORE0_IRQ

1 = CORE1_IRQ

2 = CORE2_IRQ

3 = CORE3_IRQ

4 = CORE0_FIQ

5 = CORE1_FIQ

6 = CORE2_FIQ

7 = CORE3_FIQ

RW 0x0

3:0 Reserved. - - -

PMU_CONTROL_SET Register

Description

Performance Monitoring Unit (PMU) control word. Each ARM core provides a PMUIRQ output; this control word

specifies to which interrupt pins they are routed.

Writing a '1' to a bit position in this register causes the corresponding bit in the PMU control word to be set to 1.

Table 107.

PMU_CONTROL_SET

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

07:04 PMU_FIQ PMU to FIQ routing mask.

Setting bit N within this four bit field routes the PMUIRQ

output from ARM core N to the FIQ interrupt request on

that ARM core.

RW 0x0

03:00 PMU_IRQ PMU to IRQ routing mask

Setting bit N within this four bit field routes the PMUIRQ

output from ARM core N to the IRQ interrupt request on

that ARM core. Note that it is not possible to route the PMU

interrupt to both the FIQ and IRQ request pins: setting a bit

in the PMU_FIQ field causes the request to go to the core’s

FIQ pin only, irrespective of this field.

RW 0x0

PMU_CONTROL_CLR Register

Description

Performance Monitoring Unit (PMU) control word. Each ARM core provides a PMUIRQ output; this control word

specifies to which interrupt pins they are routed.

Writing a '1' to a bit position in this register causes the corresponding bit in the PMU control word to be cleared to 0.

Table 108.

PMU_CONTROL_CLR

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

BCM2711 ARM Peripherals

6.5. Registers 92



Bits Name Description Type Reset

07:04 PMU_FIQ PMU to FIQ routing mask.

Setting bit N within this four bit field routes the PMUIRQ

output from ARM core N to the FIQ interrupt request on

that ARM core.

W1C 0x0

03:00 PMU_IRQ PMU to IRQ routing mask

Setting bit N within this four bit field routes the PMUIRQ

output from ARM core N to the IRQ interrupt request on

that ARM core. Note that it is not possible to route the PMU

interrupt to both the FIQ and IRQ request pins: setting a bit

in the PMU_FIQ field causes the request to go to the core’s

FIQ pin only, irrespective of this field.

W1C 0x0

PERI_IRQ_ROUTE0 Register

Description

This register controls the routing of the Local timer interrupts.

Table 109.

PERI_IRQ_ROUTE0

Register

Bits Name Description Type Reset

31:24 WRITE_MASKS Interrupt routing field write mask bits.

This field must be written with 0x01, otherwise changes to

LOCAL_TIMER_IRQ will be ignored.

RW 0x00

23:3 Reserved. - - -

02:00 LOCAL_TIMER_IR

Q

Local timer Routing

0 = CORE0_IRQ

1 = CORE1_IRQ

2 = CORE2_IRQ

3 = CORE3_IRQ

4 = CORE0_FIQ

5 = CORE1_FIQ

6 = CORE2_FIQ

7 = CORE3_FIQ

RW 0x0

AXI_QUIET_TIME Register

Description

No outstanding AXI transactions for a while.

This register controls logic that is able to generate an interrupt to the IRQ interrupt pin of ARM core 0 if there has been

no AXI bus traffic for a programmable time. The intention is that software can use this to have reasonable confidence

that the bus traffic from the ARM cluster to VideoCore has ceased.

A 24-bit timer is loaded with a value equal to

16 x AXI_QUIET_TIME.AXI_QUIET_TIME + 15

whenever one or more AXI transactions are outstanding. The counter decrements on each AXI/APB clock rising edge

when no transactions are outstanding. When the counter reaches zero, the interrupt request is generated if enabled.

Table 110.

AXI_QUIET_TIME

Register

Bits Name Description Type Reset

31:21 Reserved. - - -

20 AXI_QUIET_IRQ_E

NB

1: Enable Core 0 IRQ on AXI quiet timer expiry

0: Disable Core 0 IRQ on AXI quiet timer expiry

RW 0x0

19:00 AXI_QUIET_TIME Timer load value, in units of 16 AXI/APB clock cycles. RW 0x00000

BCM2711 ARM Peripherals

6.5. Registers 93



LOCAL_TIMER_CONTROL Register

Description

Local Timer Configuration.

A free-running secondary timer is provided that can generate an interrupt each time it crosses zero. When it is

enabled, the timer is decremented on each edge (positive or negative) of the crystal reference clock. It is

automatically reloaded with the TIMER_TIMEOUT value when it reaches zero and then continues to decrement.

Routing of the timer interrupt is controlled by the PERI_IRQ_ROUTE0 register.

Table 111.

LOCAL_TIMER_CONTR

OL Register

Bits Name Description Type Reset

31 TIMER_IRQ_FLAG This read-only field allows software to see the current state

of the timer interrupt request. A '1' indicates a valid

interrupt request.

RO 0x0

30 Reserved. - - -

29 TIMER_IRQ_EN Interrupt request enable.

When set to '1', this bit causes the timer to request an

interrupt as the timer crosses zero.

RW 0x0

28 TIMER_EN Timer Enable

When set to '1', this bit enables to the timer. When cleared

to '0', timer operation is completely disabled: the timer does

not decrement or raise interrupt requests.

RW 0x0

27:00 TIMER_TIMEOUT Timer load value. RW 0x0000000

LOCAL_TIMER_IRQ Register

Description

Local Timer Interrupt Control

Table 112.

LOCAL_TIMER_IRQ

Register

Bits Name Description Type Reset

31 IRQ_CLEAR Write a '1' to this field to clear a timer interrupt request. If

the timer crosses zero at the same time as the write, the

clear operation will fail; interrupt request will remain

asserted. This bit self-clears.

W1SC 0x0

30 RELOAD Write a '1' to this field to (re)load the timer with the timeout

value. This bit self-clears.

W1SC 0x0

29:0 Reserved. - - -

TIMER_CNTRL0, TIMER_CNTRL1, TIMER_CNTRL2, TIMER_CNTRL3 Registers

Description

This register allows software to determine the cause of a FIQ interrupt request received by an ARM core.

Table 113.

TIMER_CNTRL0,

TIMER_CNTRL1,

TIMER_CNTRL2,

TIMER_CNTRL3

Registers

Bits Name Description Type Reset

31:8 Reserved. - - -

07 CNT_V_IRQ_FIQ When set to '1', this bit causes the 'Virtual Timer Event'

output to be routed to the FIQ interrupt request.

RW 0x0

06 CNT_HP_IRQ_FIQ When set to '1', this bit causes the 'Hypervisor Physical

Timer Event' output to be routed to the FIQ interrupt

request.

RW 0x0

BCM2711 ARM Peripherals

6.5. Registers 94



Bits Name Description Type Reset

05 CNT_PNS_IRQ_FI

Q

When set to '1', this bit causes the 'Nonsecure Physical

Timer Event' output to be routed to the FIQ interrupt

request.

RW 0x0

04 CNT_PS_IRQ_FIQ When set to '1', this bit causes the 'Secure Physical Timer

Event' output to be routed to the FIQ interrupt request.

RW 0x0

03 CNT_V_IRQ When set to '1', this bit causes the 'Virtual Timer Event'

output to be routed to the IRQ interrupt request. Note that

this is overridden by the corresponding FIQ bit: a particular

event may be routed either to the FIQ or IRQ request pin,

not both. If the FIQ bit is set, then the event will be routed to

the FIQ request pin only, irrespective of the state of this bit.

RW 0x0

02 CNT_HP_IRQ When set to '1', this bit causes the 'Hypervisor Physical

Timer Event' output to be routed to the IRQ interrupt

request. Note that this is overridden by the corresponding

FIQ bit: a particular event may be routed either to the FIQ or

IRQ request pin, not both. If the FIQ bit is set, then the event

will be routed to the FIQ request pin only, irrespective of the

state of this bit.

RW 0x0

01 CNT_PNS_IRQ When set to '1', this bit causes the 'Nonsecure Physical

Timer Event' output to be routed to the IRQ interrupt

request. Note that this is overridden by the corresponding

FIQ bit: a particular event may be routed either to the FIQ or

IRQ request pin, not both. If the FIQ bit is set, then the event

will be routed to the FIQ request pin only, irrespective of the

state of this bit.

RW 0x0

00 CNT_PS_IRQ When set to '1', this bit causes the 'Secure Physical Timer

Event' output to be routed to the IRQ interrupt request. Note

that this is overridden by the corresponding FIQ bit: a

particular event may be routed either to the FIQ or IRQ

request pin, not both. If the FIQ bit is set, then the event will

be routed to the FIQ request pin only, irrespective of the

state of this bit.

RW 0x0

MAILBOX_CNTRL0, MAILBOX_CNTRL1, MAILBOX_CNTRL2,

MAILBOX_CNTRL3 Registers

Description

This register controls the routing of the mailbox interrupts to an ARM core’s IRQ or FIQ interrupt request pins. Each

ARM can receive interrupts from four of the sixteen mailbox registers. For ARM core 0, these are mailboxes 0-3; for

ARM core 1, mailboxes 4-7 and so on.

Table 114.

MAILBOX_CNTRL0,

MAILBOX_CNTRL1,

MAILBOX_CNTRL2,

MAILBOX_CNTRL3

Registers

Bits Name Description Type Reset

31:8 Reserved. - - -

07 MBOX3_FIQ When set to '1', this bit causes the fourth mailbox, i.e.

mailbox 4C+3 for ARM core number C, (so mailbox 3 for

ARM core 0, 7 for ARM core 1, etc.) to trigger a FIQ

interrupt when any bit is set in the mailbox.

RW 0x0

BCM2711 ARM Peripherals

6.5. Registers 95



Bits Name Description Type Reset

06 MBOX2_FIQ When set to '1', this bit causes the third mailbox, i.e.

mailbox 4C+2 for ARM core number C, (so mailbox 2 for

ARM core 0, 6 for ARM core 1, etc.) to trigger a FIQ

interrupt when any bit is set in the mailbox.

RW 0x0

05 MBOX1_FIQ When set to '1', this bit causes the second mailbox, i.e.

mailbox 4C+1 for ARM core number C, (so mailbox 1 for

ARM core 0, 5 for ARM core 1, etc.) to trigger a FIQ

interrupt when any bit is set in the mailbox.

RW 0x0

04 MBOX0_FIQ When set to '1', this bit causes the first mailbox, i.e. mailbox

4C for ARM core number C, (so mailbox 0 for ARM core 0, 4

for ARM core 1, etc.) to trigger a FIQ interrupt when any bit

is set in the mailbox.

RW 0x0

03 MBOX3_IRQ When set to '1', this bit causes the fourth mailbox, i.e.

mailbox 4C+3 for ARM core number C, (so mailbox 3 for

ARM core 0, 7 for ARM core 1, etc.) to trigger an IRQ

interrupt when any bit is set in the mailbox. Note that this is

overridden by the corresponding FIQ bit: a particular event

may be routed either to the FIQ or IRQ request pin, not both.

If the FIQ bit is set, then the event will be routed to the FIQ

request pin only, irrespective of the state of this bit.

RW 0x0

02 MBOX2_IRQ When set to '1', this bit causes the third mailbox, i.e.

mailbox 4C+2 for ARM core number C, (so mailbox 2 for

ARM core 0, 6 for ARM core 1, etc.) to trigger an IRQ

interrupt when any bit is set in the mailbox. Note that this is

overridden by the corresponding FIQ bit: a particular event

may be routed either to the FIQ or IRQ request pin, not both.

If the FIQ bit is set, then the event will be routed to the FIQ

request pin only, irrespective of the state of this bit.

RW 0x0

01 MBOX1_IRQ When set to '1', this bit causes the second mailbox, i.e.

mailbox 4C+1 for ARM core number C, (so mailbox 1 for

ARM core 0, 5 for ARM core 1, etc.) to trigger an IRQ

interrupt when any bit is set in the mailbox. Note that this is

overridden by the corresponding FIQ bit: a particular event

may be routed either to the FIQ or IRQ request pin, not both.

If the FIQ bit is set, then the event will be routed to the FIQ

request pin only, irrespective of the state of this bit.

RW 0x0

00 MBOX0_IRQ When set to '1', this bit causes the first mailbox, i.e. mailbox

4C for ARM core number C, (so mailbox 0 for ARM core 0, 4

for ARM core 1, etc.) to trigger an IRQ interrupt when any

bit is set in the mailbox. Note that this is overridden by the

corresponding FIQ bit: a particular event may be routed

either to the FIQ or IRQ request pin, not both. If the FIQ bit is

set, then the event will be routed to the FIQ request pin only,

irrespective of the state of this bit.

RW 0x0

IRQ_SOURCE0, IRQ_SOURCE1, IRQ_SOURCE2, IRQ_SOURCE3 Registers

Description

This register allows software to determine the cause of an IRQ interrupt request received by an ARM core.

BCM2711 ARM Peripherals

6.5. Registers 96



Table 115.

IRQ_SOURCE0,

IRQ_SOURCE1,

IRQ_SOURCE2,

IRQ_SOURCE3

Registers

Bits Name Description Type Reset

31 Reserved. - - -

30 AXI_IRQ AXI error, as reported by the ARM L2 cache. RO 0x0

29:12 Reserved. - - -

11 TIMER_IRQ Local timer interrupt. RO 0x0

10 AXI_QUIET No AXI outstanding requests have been seen for the time-

out period.

Present for Core 0 only. Reserved for others.

RO 0x0

09 PMU_IRQ Performance measurement unit interrupt. RO 0x0

08 CORE_IRQ VideoCore interrupt request. RO 0x0

07:04 MAILBOX_IRQ Mailbox interrupts: bit 4 is the first of the core’s mailboxes,

bit 7 is the fourth.

RO 0x0

03 CNT_V_IRQ Virtual Timer Event interrupt. RO 0x0

02 CNT_HP_IRQ Hypervisor Physical Timer Event interrupt. RO 0x0

01 CNT_PNS_IRQ Nonsecure Physical Timer Event interrupt. RO 0x0

00 CNT_PS_IRQ Secure Physical Timer Event interrupt. RO 0x0

FIQ_SOURCE0, FIQ_SOURCE1, FIQ_SOURCE2, FIQ_SOURCE3 Registers

Description

This register allows software to determine the cause of a FIQ interrupt request received by an ARM core.

Table 116.

FIQ_SOURCE0,

FIQ_SOURCE1,

FIQ_SOURCE2,

FIQ_SOURCE3

Registers

Bits Name Description Type Reset

31 Reserved. - - -

30 AXI_FIQ AXI error, as reported by the ARM L2 cache. RO 0x0

29:12 Reserved. - - -

11 LOCAL_TIMER_FI

Q

Local timer interrupt. RO 0x0

10 Reserved. - - -

09 PMU_FIQ Performance measurement unit interrupt. RO 0x0

08 CORE_FIQ VideoCore interrupt request. RO 0x0

07:04 MAILBOX_FIQ Mailbox interrupts: bit 4 is the first of the core’s mailboxes,

bit 7 is the fourth.

RO 0x0

03 CNT_V_FIQ Virtual Timer Event interrupt. RO 0x0

02 CNT_HP_FIQ Hypervisor Physical Timer Event interrupt. RO 0x0

01 CNT_PNS_FIQ Nonsecure Physical Timer Event interrupt. RO 0x0

00 CNT_PS_FIQ Secure Physical Timer Event interrupt. RO 0x0

6.5.3. ARMC

The IRQn_SET_EN_x / IRQn_CLR_EN_x, FIQn_SET_EN_x / FIQn_CLR_EN_x and SWIRQ_SET / SWIRQ_CLEAR registers are

write-set / write-clear registers as described earlier.

BCM2711 ARM Peripherals

6.5. Registers 97



The ARMC register base address is 0x7e00b000.

Table 117. ARMC

Interrupt Registers
Offset Name Description

0x200 IRQ0_PENDING0 ARM Core 0 IRQ Enabled Interrupt Pending bits [31:0]

0x204 IRQ0_PENDING1 ARM Core 0 IRQ Enabled Interrupt pending bits [63:32]

0x208 IRQ0_PENDING2 ARM Core 0 IRQ Enabled Interrupt pending bits [79:64]

0x210 IRQ0_SET_EN_0 Write to Set ARM Core 0 IRQ enable bits [31:0]

0x214 IRQ0_SET_EN_1 Write to Set ARM Core 0 IRQ enable bits [63:32]

0x218 IRQ0_SET_EN_2 Write to Set ARM Core 0 IRQ enable bits[79:64]

0x220 IRQ0_CLR_EN_0 Write to Clear ARM Core 0 IRQ enable bits [31:0]

0x224 IRQ0_CLR_EN_1 Write to Clear ARM Core 0 IRQ enable bits [63:32]

0x228 IRQ0_CLR_EN_2 Write to Clear ARM Core 0 IRQ enable bits [79:64]

0x230 IRQ_STATUS0 Interrupt Line bits [31:0]

0x234 IRQ_STATUS1 Interrupt Line bits [63:32]

0x238 IRQ_STATUS2 Interrupt Line bits [79:64]

0x240 IRQ1_PENDING0 ARM Core 1 IRQ Enabled Interrupt pending bits [31:0]

0x244 IRQ1_PENDING1 ARM Core 1 IRQ Enabled Interrupt pending bits [63:32]

0x248 IRQ1_PENDING2 ARM Core 1 IRQ Enabled Interrupt pending bits [79:64]

0x250 IRQ1_SET_EN_0 Write to Set ARM Core 1 IRQ enable bits [31:0]

0x254 IRQ1_SET_EN_1 Write to Set ARM Core 1 IRQ enable bits [63:32]

0x258 IRQ1_SET_EN_2 Write to Set ARM Core 1 IRQ enable bits[79:64]

0x260 IRQ1_CLR_EN_0 Write to Clear ARM Core 1 IRQ enable bits [31:0]

0x264 IRQ1_CLR_EN_1 Write to Clear ARM Core 1 IRQ enable bits [63:32]

0x268 IRQ1_CLR_EN_2 Write to Clear ARM Core 1 IRQ enable bits [79:64]

0x280 IRQ2_PENDING0 ARM Core 2 IRQ Enabled Interrupt pending bits [31:0]

0x284 IRQ2_PENDING1 ARM Core 2 IRQ Enabled Interrupt pending bits [63:32]

0x288 IRQ2_PENDING2 ARM Core 2 IRQ Enabled Interrupt pending bits [79:64]

0x290 IRQ2_SET_EN_0 Write to Set ARM Core 2 IRQ enable bits [31:0]

0x294 IRQ2_SET_EN_1 Write to Set ARM Core 2 IRQ enable bits [63:32]

0x298 IRQ2_SET_EN_2 Write to Set ARM Core 2 IRQ enable bits[79:64]

0x2a0 IRQ2_CLR_EN_0 Write to Clear ARM Core 2 IRQ enable bits [31:0]

0x2a4 IRQ2_CLR_EN_1 Write to Clear ARM Core 2 IRQ enable bits [63:32]

0x2a8 IRQ2_CLR_EN_2 Write to Clear ARM Core 2 IRQ enable bits [79:64]

0x2c0 IRQ3_PENDING0 ARM Core 3 IRQ Enabled Interrupt pending bits [31:0]

0x2c4 IRQ3_PENDING1 ARM Core 3 IRQ Enabled Interrupt pending bits [63:32]

0x2c8 IRQ3_PENDING2 ARM Core 3 IRQ Enabled Interrupt pending bits [79:64]

0x2d0 IRQ3_SET_EN_0 Write to Set ARM Core 3 IRQ enable bits [31:0]

0x2d4 IRQ3_SET_EN_1 Write to Set ARM Core 3 IRQ enable bits [63:32]

BCM2711 ARM Peripherals

6.5. Registers 98



Offset Name Description

0x2d8 IRQ3_SET_EN_2 Write to Set ARM Core 3 IRQ enable bits[79:64]

0x2e0 IRQ3_CLR_EN_0 Write to Clear ARM Core 3 IRQ enable bits [31:0]

0x2e4 IRQ3_CLR_EN_1 Write to Clear ARM Core 3 IRQ enable bits [63:32]

0x2e8 IRQ3_CLR_EN_2 Write to Clear ARM Core 3 IRQ enable bits [79:64]

0x300 FIQ0_PENDING0 ARM Core 0 FIQ Enabled Interrupt pending bits [31:0]

0x304 FIQ0_PENDING1 ARM Core 0 FIQ Enabled Interrupt pending bits [63:32]

0x308 FIQ0_PENDING2 ARM Core 0 FIQ Enabled Interrupt pending bits [79:64]

0x310 FIQ0_SET_EN_0 Write to Set ARM Core 0 FIQ enable bits [31:0]

0x314 FIQ0_SET_EN_1 Write to Set ARM Core 0 FIQ enable bits [63:32]

0x318 FIQ0_SET_EN_2 Write to Set ARM Core 0 FIQ enable bits[79:64]

0x320 FIQ0_CLR_EN_0 Write to Clear ARM Core 0 FIQ enable bits [31:0]

0x324 FIQ0_CLR_EN_1 Write to Clear ARM Core 0 FIQ enable bits [63:32]

0x328 FIQ0_CLR_EN_2 Write to Clear ARM Core 0 FIQ enable bits [79:64]

0x340 FIQ1_PENDING0 ARM Core 1 FIQ Enabled Interrupt pending bits [31:0]

0x344 FIQ1_PENDING1 ARM Core 1 FIQ Enabled Interrupt pending bits [63:32]

0x348 FIQ1_PENDING2 ARM Core 1 FIQ Enabled Interrupt pending bits [79:64]

0x350 FIQ1_SET_EN_0 Write to Set ARM Core 1 FIQ enable bits [31:0]

0x354 FIQ1_SET_EN_1 Write to Set ARM Core 1 FIQ enable bits [63:32]

0x358 FIQ1_SET_EN_2 Write to Set ARM Core 1 FIQ enable bits[79:64]

0x360 FIQ1_CLR_EN_0 Write to Clear ARM Core 1 FIQ enable bits [31:0]

0x364 FIQ1_CLR_EN_1 Write to Clear ARM Core 1 FIQ enable bits [63:32]

0x368 FIQ1_CLR_EN_2 Write to Clear ARM Core 1 FIQ enable bits [79:64]

0x380 FIQ2_PENDING0 ARM Core 2 FIQ Enabled Interrupt pending bits [31:0]

0x384 FIQ2_PENDING1 ARM Core 2 FIQ Enabled Interrupt pending bits [63:32]

0x388 FIQ2_PENDING2 ARM Core 2 FIQ Enabled Interrupt pending bits [79:64]

0x390 FIQ2_SET_EN_0 Write to Set ARM Core 2 FIQ enable bits [31:0]

0x394 FIQ2_SET_EN_1 Write to Set ARM Core 2 FIQ enable bits [63:32]

0x398 FIQ2_SET_EN_2 Write to Set ARM Core 2 FIQ enable bits[79:64]

0x3a0 FIQ2_CLR_EN_0 Write to Clear ARM Core 2 FIQ enable bits [31:0]

0x3a4 FIQ2_CLR_EN_1 Write to Clear ARM Core 2 FIQ enable bits [63:32]

0x3a8 FIQ2_CLR_EN_2 Write to Clear ARM Core 2 FIQ enable bits [79:64]

0x3c0 FIQ3_PENDING0 ARM Core 3 FIQ Enabled Interrupt pending bits [31:0]

0x3c4 FIQ3_PENDING1 ARM Core 3 FIQ Enabled Interrupt pending bits [63:32]

0x3c8 FIQ3_PENDING2 ARM Core 3 FIQ Enabled Interrupt pending bits [79:64]

0x3d0 FIQ3_SET_EN_0 Write to Set ARM Core 3 FIQ enable bits [31:0]

0x3d4 FIQ3_SET_EN_1 Write to Set ARM Core 3 FIQ enable bits [63:32]

BCM2711 ARM Peripherals

6.5. Registers 99



Offset Name Description

0x3d8 FIQ3_SET_EN_2 Write to Set ARM Core 3 FIQ enable bits[79:64]

0x3e0 FIQ3_CLR_EN_0 Write to Clear ARM Core 3 FIQ enable bits [31:0]

0x3e4 FIQ3_CLR_EN_1 Write to Clear ARM Core 3 FIQ enable bits [63:32]

0x3e8 FIQ3_CLR_EN_2 Write to Clear ARM Core 3 FIQ enable bits [79:64]

0x3f0 SWIRQ_SET Write to Set Software Interrupt sources

0x3f4 SWIRQ_CLEAR Write to Clear Software Interrupt sources

IRQ0_PENDING0, IRQ1_PENDING0, IRQ2_PENDING0, IRQ3_PENDING0

Registers

Description

Shows the status of the Enabled interrupts [31:0] (that will be OR-ed into the Core’s interrupt line)

Only Interrupts that are enabled will show up here

Table 118.

IRQ0_PENDING0,

IRQ1_PENDING0,

IRQ2_PENDING0,

IRQ3_PENDING0

Registers

Bits Name Description Type Reset

31:00 VC_IRQ_31_0 VideoCore interrupts 31 to 0. RO 0x00000000

IRQ0_PENDING1, IRQ1_PENDING1, IRQ2_PENDING1, IRQ3_PENDING1

Registers

Description

Shows the status of the Enabled interrupts [63:32] (that will be OR-ed into the Core’s interrupt line)

Only Interrupts that are enabled will show up here

Table 119.

IRQ0_PENDING1,

IRQ1_PENDING1,

IRQ2_PENDING1,

IRQ3_PENDING1

Registers

Bits Name Description Type Reset

31:00 VC_IRQ_63_32 VideoCore interrupts 63 to 32. RO 0x00000000

IRQ0_PENDING2, IRQ1_PENDING2, IRQ2_PENDING2, IRQ3_PENDING2

Registers

Description

Shows the status of the Enabled interrupts [79:64] (that will be OR-ed into the Core’s interrupt line)

Only Interrupts that are enabled will show up here

Table 120.

IRQ0_PENDING2,

IRQ1_PENDING2,

IRQ2_PENDING2,

IRQ3_PENDING2

Registers

Bits Name Description Type Reset

31 IRQ This is the value of the ARM interrupt input RO 0x0

30:26 Reserved. - - -

25 INT63_32 This bit is the logical OR of all the interrupt pending bits for

interrupts 63 to 32. If set, read the PENDING1 register to

determine which interrupts are pending from this set.

RO 0x0

24 INT31_0 This bit is the logical OR of all the interrupt pending bits for

interrupts 31 to 0. If set, read the PENDING0 register to

determine which interrupts are pending from this set.

RO 0x0

23:16 Reserved. - - -

BCM2711 ARM Peripherals

6.5. Registers 100



Bits Name Description Type Reset

15:08 SW_TRIG_INT These eight bits are software-triggered interrupts. By

writing to the SWIRQ_SET register, software may set

interrupt trigger bits. These interrupts can only be cleared

by clearing the trigger bit by writing to the SWIRQ_CLEAR

register.

RO 0x00

07 ARM_AXI_ERROR ARM AXI error interrupt. This is set if the logic in the ARM

block detects that an AXI error has occurred. This interrupt

cannot be cleared other than by resetting the ARM

complex.

RO 0x0

06 ARM_ADDR_ERRO

R

ARM address range error. This interrupt is set if the ARM

attempts an AXI burst (ALEN > 0) access to VideoCore

peripheral space.

RO 0x0

05 VPU_C1_HALT VPU Core 1 halted in debug mode. RO 0x0

04 VPU_C0_C1_HALT VPU Core 0 halted in debug mode, or (if enabled by bit 10

of the config register) VPU Core 1 halted in debug mode.

RO 0x0

03 BELL_IRQ1 Doorbell 1 interrupt. This interrupt can be cleared by

reading the relevant doorbell register.

RO 0x0

02 BELL_IRQ0 Doorbell 0 interrupt. This interrupt can be cleared by

reading the relevant doorbell register.

RO 0x0

01 MAILBOX_IRQ0 Mailbox 0 interrupt. RO 0x0

00 TIMER_IRQ Timer interrupt. This interrupt can be cleared by writing to

the IRQCNTL register.

RO 0x0

IRQ0_SET_EN_0, IRQ1_SET_EN_0, IRQ2_SET_EN_0, IRQ3_SET_EN_0 Registers

Description

Writing a '1' to a bit position in this register enables the corresponding interrupt.

A read returns the current state of this enable register.

Table 121.

IRQ0_SET_EN_0,

IRQ1_SET_EN_0,

IRQ2_SET_EN_0,

IRQ3_SET_EN_0

Registers

Bits Name Description Type Reset

31:00 VC_IRQ_31_0 VideoCore interrupts 31 to 0. RW 0x00000000

IRQ0_SET_EN_1, IRQ1_SET_EN_1, IRQ2_SET_EN_1, IRQ3_SET_EN_1 Registers

Description

Writing a '1' to a bit position in this register enables the corresponding interrupt.

A read returns the current state of this enable register.

Table 122.

IRQ0_SET_EN_1,

IRQ1_SET_EN_1,

IRQ2_SET_EN_1,

IRQ3_SET_EN_1

Registers

Bits Name Description Type Reset

31:00 VC_IRQ_63_32 VideoCore interrupts 63 to 32. RW 0x00000000

IRQ0_SET_EN_2, IRQ1_SET_EN_2, IRQ2_SET_EN_2, IRQ3_SET_EN_2 Registers

Description

Writing a '1' to a bit position in this register enables the corresponding interrupt.

A read returns the current state of this enable register.

BCM2711 ARM Peripherals

6.5. Registers 101



Table 123.

IRQ0_SET_EN_2,

IRQ1_SET_EN_2,

IRQ2_SET_EN_2,

IRQ3_SET_EN_2

Registers

Bits Name Description Type Reset

31 IRQ This is the value of the ARM interrupt input RW 0x0

30:16 Reserved. - - -

15:08 SW_TRIG_INT These eight bits are software-triggered interrupts. By

writing to the SWIRQ_SET register, software may set

interrupt trigger bits.

RW 0x00

07 ARM_AXI_ERROR ARM AXI error interrupt. This is set if the logic in the ARM

block detects that an AXI error has occurred.

RW 0x0

06 ARM_ADDR_ERRO

R

ARM address range error. This interrupt is set if the ARM

attempts an AXI burst (ALEN > 0) access to VideoCore

peripheral space.

RW 0x0

05 VPU_C1_HALT VPU Core 1 halted in debug mode. RW 0x0

04 VPU_C0_C1_HALT VPU Core 0 halted in debug mode, or (if enabled by bit 10

of the config register) VPU Core 1 halted in debug mode.

RW 0x0

03 BELL_IRQ1 Doorbell 1 interrupt. RW 0x0

02 BELL_IRQ0 Doorbell 0 interrupt. RW 0x0

01 MAILBOX_IRQ0 Mailbox 0 interrupt. RW 0x0

00 TIMER_IRQ Timer interrupt. RW 0x0

IRQ0_CLR_EN_0, IRQ1_CLR_EN_0, IRQ2_CLR_EN_0, IRQ3_CLR_EN_0 Registers

Description

Writing a '1' to a bit position in this register disables the corresponding interrupt.

A read returns the current state of the IRQ enable register.

Table 124.

IRQ0_CLR_EN_0,

IRQ1_CLR_EN_0,

IRQ2_CLR_EN_0,

IRQ3_CLR_EN_0

Registers

Bits Name Description Type Reset

31:00 VC_IRQ_31_0 VideoCore interrupts 31 to 0. W1C 0x00000000

IRQ0_CLR_EN_1, IRQ1_CLR_EN_1, IRQ2_CLR_EN_1, IRQ3_CLR_EN_1 Registers

Description

Writing a '1' to a bit position in this register disables the corresponding interrupt.

A read returns the current state of the IRQ enable register.

Table 125.

IRQ0_CLR_EN_1,

IRQ1_CLR_EN_1,

IRQ2_CLR_EN_1,

IRQ3_CLR_EN_1

Registers

Bits Name Description Type Reset

31:00 VC_IRQ_63_32 VideoCore interrupts 63 to 32. W1C 0x00000000

IRQ0_CLR_EN_2, IRQ1_CLR_EN_2, IRQ2_CLR_EN_2, IRQ3_CLR_EN_2 Registers

Description

Writing a '1' to a bit position in this register disables the corresponding interrupt.

A read returns the current state of the IRQ enable register.

Table 126.

IRQ0_CLR_EN_2,

IRQ1_CLR_EN_2,

IRQ2_CLR_EN_2,

IRQ3_CLR_EN_2

Registers

Bits Name Description Type Reset

31 IRQ This is the value of the ARM interrupt input W1C 0x0

30:16 Reserved. - - -

BCM2711 ARM Peripherals

6.5. Registers 102



Bits Name Description Type Reset

15:08 SW_TRIG_INT These eight bits are software-triggered interrupts. By

writing to the SWIRQ_SET register, software may set

interrupt trigger bits.

W1C 0x00

07 ARM_AXI_ERROR ARM AXI error interrupt. This is set if the logic in the ARM

block detects that an AXI error has occurred.

W1C 0x0

06 ARM_ADDR_ERRO

R

ARM address range error. This interrupt is set if the ARM

attempts an AXI burst (ALEN > 0) access to VideoCore

peripheral space.

W1C 0x0

05 VPU_C1_HALT VPU Core 1 halted in debug mode. W1C 0x0

04 VPU_C0_C1_HALT VPU Core 0 halted in debug mode, or (if enabled by bit 10

of the config register) VPU Core 1 halted in debug mode.

W1C 0x0

03 BELL_IRQ1 Doorbell 1 interrupt. W1C 0x0

02 BELL_IRQ0 Doorbell 0 interrupt. W1C 0x0

01 MAILBOX_IRQ0 Mailbox 0 interrupt. W1C 0x0

00 TIMER_IRQ Timer interrupt. W1C 0x0

IRQ_STATUS0 Register

Description

Shows the status of the actual Interrupts [31:0] before they are masked

Table 127.

IRQ_STATUS0 Register
Bits Name Description Type Reset

31:00 VC_IRQ_31_0 VideoCore interrupts 31 to 0. RO 0x00000000

IRQ_STATUS1 Register

Description

Shows the status of the actual Interrupts [63:32] before they are masked

Table 128.

IRQ_STATUS1 Register
Bits Name Description Type Reset

31:00 VC_IRQ_63_32 VideoCore interrupts 63 to 32. RO 0x00000000

IRQ_STATUS2 Register

Description

Shows the status of the actual Interrupts [79:64] before they are masked

Table 129.

IRQ_STATUS2 Register
Bits Name Description Type Reset

31 IRQ This is the value of the ARM interrupt input RO 0x0

30:16 Reserved. - - -

15:08 SW_TRIG_INT These eight bits are software-triggered interrupts. By

writing to the SWIRQ_SET register, software may set

interrupt trigger bits. These interrupts can only be cleared

by clearing the trigger bit by writing to the SWIRQ_CLEAR

register.

RO 0x00

BCM2711 ARM Peripherals

6.5. Registers 103



Bits Name Description Type Reset

07 ARM_AXI_ERROR ARM AXI error interrupt. This is set if the logic in the ARM

block detects that an AXI error has occurred. This interrupt

cannot be cleared other than by resetting the ARM

complex.

RO 0x0

06 ARM_ADDR_ERRO

R

ARM address range error. This interrupt is set if the ARM

attempts an AXI burst (ALEN > 0) access to VideoCore

peripheral space.

RO 0x0

05 VPU_C1_HALT VPU Core 1 halted in debug mode. RO 0x0

04 VPU_C0_C1_HALT VPU Core 0 halted in debug mode, or (if enabled by bit 10

of the config register) VPU Core 1 halted in debug mode.

RO 0x0

03 BELL_IRQ1 Doorbell 1 interrupt. This interrupt can be cleared by

reading the relevant doorbell register.

RO 0x0

02 BELL_IRQ0 Doorbell 0 interrupt. This interrupt can be cleared by

reading the relevant doorbell register.

RO 0x0

01 MAILBOX_IRQ0 Mailbox 0 interrupt. RO 0x0

00 TIMER_IRQ Timer interrupt. This interrupt can be cleared by writing to

the IRQCNTL register.

RO 0x0

FIQ0_PENDING0, FIQ1_PENDING0, FIQ2_PENDING0, FIQ3_PENDING0

Registers

Description

Shows the status of the Enabled interrupts [31:0] (that will be OR-ed into the Core’s interrupt line)

Only Interrupts that are enabled will show up here

Table 130.

FIQ0_PENDING0,

FIQ1_PENDING0,

FIQ2_PENDING0,

FIQ3_PENDING0

Registers

Bits Name Description Type Reset

31:00 VC_IRQ_31_0 VideoCore interrupts 31 to 0. RO 0x00000000

FIQ0_PENDING1, FIQ1_PENDING1, FIQ2_PENDING1, FIQ3_PENDING1

Registers

Description

Shows the status of the Enabled interrupts [63:32] (that will be OR-ed into the Core’s interrupt line)

Only Interrupts that are enabled will show up here

Table 131.

FIQ0_PENDING1,

FIQ1_PENDING1,

FIQ2_PENDING1,

FIQ3_PENDING1

Registers

Bits Name Description Type Reset

31:00 VC_IRQ_63_32 VideoCore interrupts 63 to 32. RO 0x00000000

FIQ0_PENDING2, FIQ1_PENDING2, FIQ2_PENDING2, FIQ3_PENDING2

Registers

Description

Shows the status of the Enabled interrupts [79:64] (that will be OR-ed into the Core’s interrupt line)

Only Interrupts that are enabled will show up here

Table 132.

FIQ0_PENDING2,

FIQ1_PENDING2,

FIQ2_PENDING2,

FIQ3_PENDING2

Registers

BCM2711 ARM Peripherals

6.5. Registers 104



Bits Name Description Type Reset

31 IRQ This is the value of the ARM interrupt input RO 0x0

30:26 Reserved. - - -

BCM2711 ARM Peripherals

6.5. Registers 105



Bits Name Description Type Reset

25 INT63_32 This bit is the logical OR of all the interrupt pending bits for

interrupts 63 to 32. If set, read the PENDING1 register to

determine which interrupts are pending from this set.

RO 0x0

24 INT31_0 This bit is the logical OR of all the interrupt pending bits for

interrupts 31 to 0. If set, read the PENDING0 register to

determine which interrupts are pending from this set.

RO 0x0

23:16 Reserved. - - -

15:08 SW_TRIG_INT These eight bits are software-triggered interrupts. By

writing to the SWIRQ_SET register, software may set

interrupt trigger bits. These interrupts can only be cleared

by clearing the trigger bit by writing to the SWIRQ_CLEAR

register.

RO 0x00

07 ARM_AXI_ERROR ARM AXI error interrupt. This is set if the logic in the ARM

block detects that an AXI error has occurred. This interrupt

cannot be cleared other than by resetting the ARM

complex.

RO 0x0

06 ARM_ADDR_ERRO

R

ARM address range error. This interrupt is set if the ARM

attempts an AXI burst (ALEN > 0) access to VideoCore

peripheral space.

RO 0x0

05 VPU_C1_HALT VPU Core 1 halted in debug mode. RO 0x0

04 VPU_C0_C1_HALT VPU Core 0 halted in debug mode, or (if enabled by bit 10

of the config register) VPU Core 1 halted in debug mode.

RO 0x0

03 BELL_IRQ1 Doorbell 1 interrupt. This interrupt can be cleared by

reading the relevant doorbell register.

RO 0x0

02 BELL_IRQ0 Doorbell 0 interrupt. This interrupt can be cleared by

reading the relevant doorbell register.

RO 0x0

01 MAILBOX_IRQ0 Mailbox 0 interrupt. RO 0x0

00 TIMER_IRQ Timer interrupt. This interrupt can be cleared by writing to

the IRQCNTL register.

RO 0x0

FIQ0_SET_EN_0, FIQ1_SET_EN_0, FIQ2_SET_EN_0, FIQ3_SET_EN_0 Registers

Description

Writing a '1' to a bit position in this register enables the corresponding interrupt.

A read returns the current state of the FIQ enable register.

Table 133.

FIQ0_SET_EN_0,

FIQ1_SET_EN_0,

FIQ2_SET_EN_0,

FIQ3_SET_EN_0

Registers

Bits Name Description Type Reset

31:00 VC_IRQ_31_0 VideoCore interrupts 31 to 0. RW 0x00000000

FIQ0_SET_EN_1, FIQ1_SET_EN_1, FIQ2_SET_EN_1, FIQ3_SET_EN_1 Registers

Description

Writing a '1' to a bit position in this register enables the corresponding interrupt.

A read returns the current state of the FIQ enable register.

BCM2711 ARM Peripherals

6.5. Registers 106



Table 134.

FIQ0_SET_EN_1,

FIQ1_SET_EN_1,

FIQ2_SET_EN_1,

FIQ3_SET_EN_1

Registers

Bits Name Description Type Reset

31:00 VC_IRQ_63_32 VideoCore interrupts 63 to 32. RW 0x00000000

FIQ0_SET_EN_2, FIQ1_SET_EN_2, FIQ2_SET_EN_2, FIQ3_SET_EN_2 Registers

Description

Writing a '1' to a bit position in this register enables the corresponding interrupt.

A read returns the current state of the FIQ enable register.

Table 135.

FIQ0_SET_EN_2,

FIQ1_SET_EN_2,

FIQ2_SET_EN_2,

FIQ3_SET_EN_2

Registers

Bits Name Description Type Reset

31 IRQ This is the value of the ARM interrupt input RW 0x0

30:16 Reserved. - - -

15:08 SW_TRIG_INT These eight bits are software-triggered interrupts. By

writing to the SWIRQ_SET register, software may set

interrupt trigger bits.

RW 0x00

07 ARM_AXI_ERROR ARM AXI error interrupt. This is set if the logic in the ARM

block detects that an AXI error has occurred.

RW 0x0

06 ARM_ADDR_ERRO

R

ARM address range error. This interrupt is set if the ARM

attempts an AXI burst (ALEN > 0) access to VideoCore

peripheral space.

RW 0x0

05 VPU_C1_HALT VPU Core 1 halted in debug mode. RW 0x0

04 VPU_C0_C1_HALT VPU Core 0 halted in debug mode, or (if enabled by bit 10

of the config register) VPU Core 1 halted in debug mode.

RW 0x0

03 BELL_IRQ1 Doorbell 1 interrupt. RW 0x0

02 BELL_IRQ0 Doorbell 0 interrupt. RW 0x0

01 MAILBOX_IRQ0 Mailbox 0 interrupt. RW 0x0

00 TIMER_IRQ Timer interrupt. RW 0x0

FIQ0_CLR_EN_0, FIQ1_CLR_EN_0, FIQ2_CLR_EN_0, FIQ3_CLR_EN_0 Registers

Description

Writing a '1' to a bit position in this register disables the corresponding interrupt.

A read returns the current state of the FIQ enable register.

Table 136.

FIQ0_CLR_EN_0,

FIQ1_CLR_EN_0,

FIQ2_CLR_EN_0,

FIQ3_CLR_EN_0

Registers

Bits Name Description Type Reset

31:00 VC_IRQ_31_0 VideoCore interrupts 31 to 0. W1C 0x00000000

FIQ0_CLR_EN_1, FIQ1_CLR_EN_1, FIQ2_CLR_EN_1, FIQ3_CLR_EN_1 Registers

Description

Writing a '1' to a bit position in this register disables the corresponding interrupt.

A read returns the current state of the FIQ enable register.

BCM2711 ARM Peripherals

6.5. Registers 107



Table 137.

FIQ0_CLR_EN_1,

FIQ1_CLR_EN_1,

FIQ2_CLR_EN_1,

FIQ3_CLR_EN_1

Registers

Bits Name Description Type Reset

31:00 VC_IRQ_63_32 VideoCore interrupts 63 to 32. W1C 0x00000000

FIQ0_CLR_EN_2, FIQ1_CLR_EN_2, FIQ2_CLR_EN_2, FIQ3_CLR_EN_2 Registers

Description

Writing a '1' to a bit position in this register disables the corresponding interrupt.

A read returns the current state of the FIQ enable register.

Table 138.

FIQ0_CLR_EN_2,

FIQ1_CLR_EN_2,

FIQ2_CLR_EN_2,

FIQ3_CLR_EN_2

Registers

Bits Name Description Type Reset

31 IRQ This is the value of the ARM interrupt input W1C 0x0

30:16 Reserved. - - -

15:08 SW_TRIG_INT These eight bits are software-triggered interrupts. By

writing to the SWIRQ_SET register, software may set

interrupt trigger bits.

W1C 0x00

07 ARM_AXI_ERROR ARM AXI error interrupt. This is set if the logic in the ARM

block detects that an AXI error has occurred.

W1C 0x0

06 ARM_ADDR_ERRO

R

ARM address range error. This interrupt is set if the ARM

attempts an AXI burst (ALEN > 0) access to VideoCore

peripheral space.

W1C 0x0

05 VPU_C1_HALT VPU Core 1 halted in debug mode. W1C 0x0

04 VPU_C0_C1_HALT VPU Core 0 halted in debug mode, or (if enabled by bit 10

of the config register) VPU Core 1 halted in debug mode.

W1C 0x0

03 BELL_IRQ1 Doorbell 1 interrupt. W1C 0x0

02 BELL_IRQ0 Doorbell 0 interrupt. W1C 0x0

01 MAILBOX_IRQ0 Mailbox 0 interrupt. W1C 0x0

00 TIMER_IRQ Timer interrupt. W1C 0x0

SWIRQ_SET Register

Description

Software-triggered interrupts.

Writing a '1' to a bit position in this register sets the corresponding software interrupt source bit. A read returns the

current state of the software interrupt bits.

Table 139. SWIRQ_SET

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

07:00 SW_INT Eight software-triggered interrupt bits. RW 0x00

SWIRQ_CLEAR Register

Description

Software-triggered interrupts.

Writing a '1' to a bit position in this register clears the corresponding software interrupt source bit. A read returns the

current state of the software interrupt bits.

BCM2711 ARM Peripherals

6.5. Registers 108



Table 140.

SWIRQ_CLEAR

Register

Bits Name Description Type Reset

31:8 Reserved. - - -

07:00 SW_INT Eight software-triggered interrupt bits. W1C 0x00

BCM2711 ARM Peripherals

6.5. Registers 109



Chapter 7. PCM / I2S Audio

7.1. Overview

The PCM (Pulse Code Modulation) audio interface is an APB peripheral providing input and output of telephony or high

quality serial audio streams. It supports many classic PCM formats including I2S.

The PCM audio interface has 4 interface signals:

• PCM_CLK - bit clock

• PCM_FS - frame sync signal

• PCM_DIN - serial data input

• PCM_DOUT - serial data output

PCM is a serial format with a single-bit data_in and single-bit data_out. Data is always serialised MS-bit first.

The frame sync signal (PCM_FS) is used to delimit the serial data into individual frames. The length of the frame, and the

size and polarity of the frame sync, are fully programmable.

Frames can contain 1 or 2 audio/data channels in each direction. Each channel can be between 8 and 32 bits wide and

can be positioned anywhere within the frame as long as the two channels don’t overlap. The channel format is separately

programmable for transmit and receive directions.

Figure 10. PCM Audio

Interface Typical

Timing

The PCM_CLK can be asynchronous to the bus APB clock and can be logically inverted if required.

The direction of the PCM_CLK and PCM_FS signals can be individually selected, allowing the interface to act as a master

or slave device.

The input interface is also capable of supporting up to 2 PDM (Pulse Density Modulation) microphones, as an alternative

to the classic PCM input format, in conjunction with a PCM output.

7.2. Block Diagram

BCM2711 ARM Peripherals

7.1. Overview 110



Figure 11. PCM Audio

Interface Block

Diagram

The PCM audio interface contains separate transmit and receive FIFOs. Note that if the frame contains two data

channels, they must share the same FIFO and so the channel data will be interleaved. The block can be driven using

simple polling, an interrupt based method or direct DMA control.

7.3. Typical Timing

Figure 10 shows typical interface timing and indicates the flexibility that the peripheral offers.

Normally PCM output signals change on the rising edge of PCM_CLK and input signals are sampled on its falling edge.

The frame sync is considered as a data signal and sampled in the same way.

The front end of the PCM audio interface is run off the PCM_CLK and the PCM signals are timed against this clock.

However, the polarity of the PCM_CLK can be physically inverted, in which case the edges are reversed.

In clock master mode (CLKM=0), the PCM_CLK is an output and is driven from the PCM_MCLK clock input.

In clock slave mode (CLKM=1), the PCM_CLK is an input, supplied by some external clock source.

In frame sync master mode (FSM=0), the PCM_FS is internally generated and is treated as a data output that changes on

the positive edge of the clock. The length and polarity of the frame sync is fully programmable and it can be used as a

standard frame sync signal, or as an L-R signal for I2S.

In frame sync slave mode (FSM=1), the PCM_FS is treated as a data input and is sampled on the negative edge of

PCM_CLK. The first clock of a frame is taken as the first clock period where PCM_FS is sampled as a 1 following a period

or periods where it was previously a 0. The PCM audio interface locks onto the incoming frame sync and uses this to

indicate where the data channels are positioned. The precise timing at the start of frame is shown in Figure 12.

Note that in frame sync slave mode there are two synchronising methods. The legacy method is used when the frame

length = 0. In this case the internal frame logic has to detect the incoming PCM_FS signal and reset the internal frame

counter at the start of every frame. The logic relies on the PCM_FS to indicate the length of the frame and so can cope

with adjacent frames of different lengths. However, this creates a short timing path that will corrupt the PCM_DOUT for

one specific frame/channel setting.

The preferred method is to set the frame length to the expected length. Here the incoming PCM_FS is used to

resynchronise the internal frame counter and this eliminates the short timing path.

BCM2711 ARM Peripherals

7.3. Typical Timing 111



7.4. Operation

The PCM interface runs asynchronously at the PCM_CLK rate and automatically transfers transmit and receive data

across to the internal APB clock domain. The control registers (with the exception of INTSTC_A and GRAY) are NOT

synchronised and should be programmed before the device is enabled and should NOT be changed whilst the interface is

running.

Only the EN, RXON and TXON bits of the PCMCS register are synchronised across the PCM - APB clock domain and are

allowed to be changed whilst the interface is running.

The EN bit is a global power-saving enable. The TXON and RXON bits enable transmit and receive, and the interface is

running whenever either TXON or RXON is enabled.

In operation, the PCM format is programmed by setting the appropriate frame length, frame sync, channel position values,

and signal polarity controls. The transmit FIFO should be preloaded with data and the interface can then be enabled and

started, and will run continuously until stopped. If the receive FIFO becomes full or the transmit FIFO becomes empty, the

RXERR or TXERR error flags will be set, but the interface will just continue. If the RX FIFO overflows, new samples are

discarded and if the TX FIFO underflows, zeros are transmitted.

Normally channel data is read or written into the appropriate FIFO as a single word. If the channel is less than 32 bits, the

data is right justified and should be padded with zeros. If the RXSEX bit is set then the received data is sign extended up to

the full 32 bits. When a frame is programmed to have two data channels, then each channel is written/read as a separate

word in the FIFO, producing an interleaved data stream. When initialising the interface, the first word read out of the TX

FIFO will be used for the first channel, and the data from the first channel on the first frame to be received will be the first

word written into the RX FIFO.

If a FIFO error occurs in a two channel frame, then channel synchronisation may be lost which may result in a left-right

audio channel swap. RXSYNC and TXSYNC status bits are provided to help determine if channel slip has occurred. They

indicate if the number of words in the FIFO is a multiple of a full frame (taking into account where we are in the current

frame being transferred). This assumes that an integer number of frames data has been sent/read from the FIFOs.

If a frame is programmed to have two data channels and the packed mode bits are set (FRXP / FTXP) then the FIFOs are

configured so that each word contains the data for both channels (2 x 16-bit samples). In this mode each word written to

the TX FIFO contains two 16-bit samples, and the Least Significant sample is transmitted first. Each word read from the

RX FIFO will contain the data received from two channels, the first channel received will be in the Least Significant half of

the word. If the channel’s size is less than 16 bits, the TX data will be truncated and RX data will be padded to 16 bits with

zeros.

Note that data is always serialised MS-bit first. This is well-established behaviour in both PCM and I2S.

If the PDM input mode is enabled then channel 1 is sampled on the negative edge of PCM_CLK whilst channel 2 is

sampled on the positive edge of PCM_CLK.

Figure 12. Timing at

Start of Frame

Note that the precise timing of PCM_FS (when it is an input) is not clearly defined and it may change state before or after

the positive edge of the clock. Here the first clock of the frame is defined as the clock period where the PCM_FS is

BCM2711 ARM Peripherals

7.4. Operation 112



sampled (on a negative edge of PCM_CLK) as a 1 where it was previously sampled as a 0.

7.5. Software Operation

7.5.1. Operating in Polled mode

1. Set the EN bit to enable the PCM block. Set all operational values to define the frame and channel settings. Assert

RXCLR and/or TXCLR and wait for 2 PCM clocks to ensure the FIFOs are reset. The SYNC bit can be used to

determine when 2 clocks have passed. Set RXTHR/TXTHR to determine the FIFO thresholds.

2. If transmitting, ensure that sufficient sample words have been written to PCM FIFO before transmission is started.

Set TXON and/or RXON to begin operation.

3. Poll TXW writing sample words to PCM FIFO and poll RXR reading sample words from PCM FIFO, until all data is

transferred.

7.5.2. Operating in Interrupt mode

1. Set the EN bit to enable the PCM block. Set all operational values to define the frame and channel settings. Assert

RXCLR and/or TXCLR and wait for 2 PCM clocks to ensure the FIFOs are reset. The SYNC bit can be used to

determine when 2 clocks have passed. Set RXTHR/TXTHR to determine the FIFO thresholds.

2. Set INTR and/or INTT to enable interrupts.

3. If transmitting, ensure that sufficient sample words have been written to PCM FIFO before transmission is started.

Set TXON and/or RXON to begin operation.

4. When an interrupt occurs, check RXR. If this is set then one or more sample words are available in PCM FIFO. If TXW

is set then one or more sample words can be sent to PCM FIFO.

7.5.3. DMA

1. Set the EN bit to enable the PCM block. Set all operational values to define the frame and channel settings. Assert

RXCLR and/or TXCLR and wait for 2 PCM clocks to ensure the FIFOs are reset. The SYNC bit can be used to

determine when 2 clocks have passed.

2. Set DMAEN to enable DMA DREQ generation and set RX_REQ/TX_REQ to determine the FIFO thresholds for the

DREQs. If required, set TX_PANIC and RX_PANIC to determine the level at which the DMA should increase its AXI

priority,

3. In the DMA controllers set the correct DREQ channels, one for RX and one for TX. Start the DMA which should fill the

TX FIFO.

4. Set TXON and/or RXON to begin operation.

7.6. Error Handling

In all software operational modes, the possibility of FIFO over- or under-run exists. Should this happen when using 2

channels per frame, there is a risk of losing sync with the channel data stored in the FIFO. If this happens and is not

detected and corrected, then the data channels may become swapped.

The FIFOs will automatically detect an error condition caused by a FIFO over- or under-run and this will set the appropriate

latching error bit in the control/status register. Writing a ‘1’ back to this error bit will clear the latched flag.

In a system using a polled operation, the error bits can be checked manually. For an interrupt or DMA based system,

setting the RXERR and/or TXERR bits in INTEN_A will cause the PCM interface to generate an interrupt when an error is

detected.

BCM2711 ARM Peripherals

7.5. Software Operation 113



If a FIFO error occurs during operation in which 2 data channels are being used then the synchronisation of the data may

be lost. This can be recovered by either of these two methods:

• Disable transmit and receive (set TXON and RXON to 0). Clear the FIFOs (set RXCLR and TXCLR to 1). Note that it

may take up to 2 PCM clocks for the FIFOs to be physically cleared after initiating a clear. Then preload the transmit

FIFO and restart transmission. This of course loses the data in the FIFO and further interrupts the data flow to the

external device.

• Examine the TXSYNC and RXSYNC flags. These flags indicate if the amount of data in the FIFO is a whole number of

frames, automatically taking into account where we are in the current frame being transmitted or received. Thus,

providing an even number of samples was read or written to the FIFOs, then if the flags are set then this indicates

that a single word needs to be written or read to adjust the data. Normal exchange of data can then proceed (where

the first word in a data pair is for channel 1). This method should cause less disruption to the data stream.

7.7. PDM Input Mode Operation

The PDM input mode is capable of interfacing with two digital half-cycle PDM microphones and implements a 4th order

CIC decimation filter with a selectable decimation factor. The clock input of the microphones is shared with the PCM

output codec and it should be configured to provide the correct clock rate for the microphones. As a result it may be

necessary to add a number of padding bits into the PCM output and configure the output codec to allow for this.

When using the PDM input mode the bit width and the rate of the data received will depend on the decimation factor used.

Once the data has been read from the peripheral a further decimation and filtering stage will be required and can be

implemented in software. The software filter should also correct the droop introduced by the CIC filter stage. Similarly a

DC correction stage should also be employed.

Table 141. PDM Input

Mode Configuration
PDMN PCM_CLK (MHz) Peripheral Output Format OSR Fs

0 (N=16) 3.072 16 bits unsigned 4 48kHz

1 (N=32) 3.072 20 bits unsigned 2 48kHz

7.8. GRAY Code Input Mode Operation

GRAY mode is used for an incoming data stream only. GRAY mode is selected by setting the enable bit (EN) in the

PCM_GRAY register.

In this mode data is received on the PCM_DIN (data) and the PCM_FS (strobe) pins. The data is expected to be in

data/strobe format. In this mode data is detected when either the data or the strobe change state. As each bit is received

it is written into the RX buffer and when 32 bits are received they are written out to the RX FIFO as a 32-bit word. In order

for this mode to work the user must program a PCM clock rate which is 4 times faster then the gray data rate. Also the

gray coded data input signals should be clean.

The normal RX_REQ and RXTHR FIFO levels will apply as for normal PCM received data.

If a message is received that is not a multiple of 32 bits, any data in the RX buffer can be flushed out by setting the flush

bit (FLUSH). Once set, this bit will read back as zero until the flush operation has completed. This may take several cycles

as the APB clock may be many times faster than the PCM clock. Once the flush has occurred, the bits are packed up to 32

bits with zeros and written out to the RX FIFO. The flushed field (FLUSHED) will indicate how many of bits of this word are

valid.

Note that to get an accurate indication of the number of bits currently in the RX shift register (RXLEVEL) the APB clock

must be at least twice the PCM_CLK.

BCM2711 ARM Peripherals

7.7. PDM Input Mode Operation 114



Figure 13. Gray mode

input format

7.9. PCM Register Map

There is only one PCM module in the BCM2711. The PCM base address for the registers is 0x7e203000.

Table 142. PCM

Register Map
Offset Name Description

0x00 CS_A PCM Control and Status

0x04 FIFO_A PCM FIFO Data

0x08 MODE_A PCM Mode

0x0c RXC_A PCM Receive Configuration

0x10 TXC_A PCM Transmit Configuration

0x14 DREQ_A PCM DMA Request Level

0x18 INTEN_A PCM Interrupt Enables

0x1c INTSTC_A PCM Interrupt Status & Clear

0x20 GRAY PCM Gray Mode Control

CS_A Register

Description

This register contains the main control and status bits for the PCM. The bottom 3 bits of this register can be written

to whilst the PCM is running. The remaining bits cannot.

Table 143. CS_A

Register
Bits Name Description Type Reset

31:25 Reserved. - - -

24 SYNC PCM Clock sync helper.

This bit provides a software synchronisation mechanism to

allow the software to detect when 2 PCM clocks have

occurred. It takes 2 PCM clocks before the value written to

this bit will be echoed back in the read value.

RW 0x0

23 RXSEX RX Sign Extend

0 = No sign extension.

1 = Sign extend the RX data. When set, the MSB of the

received data channel (as set by the CHxWID parameter) is

repeated in all the higher data bits up to the full 32-bit data

width.

RW 0x0

22 RXF RX FIFO is Full

0 = RX FIFO can accept more data.

1 = RX FIFO is full and will overflow if more data is received.

RO 0x0

BCM2711 ARM Peripherals

7.9. PCM Register Map 115



Bits Name Description Type Reset

21 TXE TX FIFO is Empty

0 = TX FIFO is not empty.

1 = TX FIFO is empty and underflow will take place if no

more data is written.

RO 0x1

20 RXD Indicates that the RX FIFO contains Data

0 = RX FIFO is empty.

1 = RX FIFO contains at least 1 sample.

RO 0x0

19 TXD Indicates that the TX FIFO can accept Data

0 = TX FIFO is full and so cannot accept more data.

1 = TX FIFO has space for at least 1 sample.

RO 0x1

18 RXR Indicates that the RX FIFO needs Reading

0 = RX FIFO is less than RXTHR full.

1 = RX FIFO is RXTHR or more full.

This is cleared by reading sufficient data from the RX FIFO.

RO 0x0

17 TXW Indicates that the TX FIFO needs Writing

0 = TX FIFO is at least TXTHR full.

1 = TX FIFO is less than TXTHR full.

This is cleared by writing sufficient data to the TX FIFO.

RO 0x1

16 RXERR RX FIFO Error

0 = FIFO has had no errors.

1 = FIFO has had an under or overflow error.

This flag is cleared by writing a 1.

W1C 0x0

15 TXERR TX FIFO Error

0 = FIFO has had no errors.

1 = FIFO has had an under or overflow error.

This flag is cleared by writing a 1.

W1C 0x0

14 RXSYNC RX FIFO Sync

0 = FIFO is out of sync. The amount of data left in the FIFO

is not a multiple of that required for a frame. This takes into

account if we are halfway through the frame.

1 = FIFO is in sync.

RO 0x0

13 TXSYNC TX FIFO Sync

0 = FIFO is out of sync. The amount of data left in the FIFO

is not a multiple of that required for a frame. This takes into

account if we are halfway through the frame.

1 = FIFO is in sync.

RO 0x0

12:10 Reserved. - - -

9 DMAEN DMA DREQ Enable

0 = Don’t generate DMA DREQ requests.

1 = Generates a TX DMA DREQ request whenever the TX

FIFO level is lower than TX_REQ or generates a RX DMA

DREQ when the RX FIFO level is higher than RX_REQ.

RW 0x0

8:7 RXTHR Sets the RX FIFO threshold at which point the RXR flag is

set

00 = set when we have a single sample in the RX FIFO

01 = set when the RX FIFO is at least ¼ full

10 = set when the RX FIFO is at least ¾ full

11 = set when the RX FIFO is full

RW 0x0

BCM2711 ARM Peripherals

7.9. PCM Register Map 116



Bits Name Description Type Reset

6:5 TXTHR Sets the TX FIFO threshold at which point the TXW flag is

set

00 = set when the TX FIFO is empty

01 = set when the TX FIFO is less than ¼ full

10 = set when the TX FIFO is less than ¾ full

11 = set when the TX FIFO is full but for one sample

RW 0x0

4 RXCLR Clear the RX FIFO.

Assert to clear RX FIFO. This bit is self clearing and is

always read as clear

Note that it will take 2 PCM clocks for the FIFO to be

physically cleared.

W1SC 0x0

3 TXCLR Clear the TX FIFO

Assert to clear TX FIFO. This bit is self clearing and is

always read as clear.

Note that it will take 2 PCM clocks for the FIFO to be

physically cleared.

W1SC 0x0

2 TXON Enable transmission

0 = Stop transmission. This will stop immediately if

possible or else at the end of the next frame. The TX FIFO

can still be written to, to preload data.

1 = Start transmission. This will start transmitting at the

start of the next frame. Once enabled, the first data read

from the TX FIFO will be placed in the first channel of the

frame, thus ensuring proper channel synchronisation.

The frame counter will be started whenever TXON or RXON

are set.

This bit can be written whilst the interface is running.

RW 0x0

1 RXON Enable reception.

0 = Disable reception. This will stop on the next available

frame end. RX FIFO data can still be read.

1 = Enable reception. This will start receiving at the start of

the next frame. The first channel to be received will be the

first word written to the RX FIFO.

This bit can be written whilst the interface is running.

RW 0x0

0 EN Enable the PCM Audio Interface

0 = The PCM interface is disabled and most logic is gated

off to save power.

1 = The PCM Interface is enabled.

This bit can be written whilst the interface is running.

RW 0x0

FIFO_A Register

Description

This is the FIFO port of the PCM. Data written here is transmitted, and received data is read from here.

BCM2711 ARM Peripherals

7.9. PCM Register Map 117



Table 144. FIFO_A

Register
Bits Name Description Type Reset

31:0 FIFO Data written here is transmitted, and received data is read

from here.

RW 0x00000000

MODE_A Register

Description

This register defines the basic PCM Operating Mode. It is used to configure the frame size and format and whether

the PCM is in master or slave modes for its frame sync or clock. This register cannot be changed whilst the PCM is

running.

Table 145. MODE_A

Register
Bits Name Description Type Reset

31:29 Reserved. - - -

28 CLK_DIS PCM Clock Disable

1 = Disable the PCM Clock.

This cleanly disables the PCM clock. This enables glitch

free clock switching between an internal and an

uncontrollable external clock. The PCM clock can be

disabled, and then the clock source switched, and then the

clock re-enabled.

0 = Enable the PCM clock.

RW 0x0

27 PDMN PDM Decimation Factor (N)

0 = Decimation factor 16.

1 = Decimation factor 32.

Sets the decimation factor of the CIC decimation filter.

RW 0x0

26 PDME PDM Input Mode Enable

0 = Disable PDM (classic PCM input).

1 = Enable PDM input filter.

Enable CIC filter on input pin for PDM inputs. In order to

receive data RXON must also be set.

RW 0x0

25 FRXP Receive Frame Packed Mode

0 = The data from each channel is written into the RX FIFO.

1 = The data from both RX channels is merged (1st

channel is in the LS half) and then written to the RX FIFO as

a single 2x16-bit packed mode word.

First received channel in the frame goes into the LS half

word. If the received data is larger than 16 bits, the upper

bits are truncated. The maximum channel size is 16 bits.

RW 0x0

24 FTXP Transmit Frame Packed Mode

0 = Each TX FIFO word is written into a single channel.

1 = Each TX FIFO word is split into 2 16-bit words and used

to fill both data channels in the same frame. The maximum

channel size is 16 bits.

The LS half of the word is used in the first channel of the

frame.

RW 0x0

23 CLKM PCM Clock Mode

0 = Master mode. The PCM CLK is an output and drives at

the MCLK rate.

1 = Slave mode. The PCM CLK is an input.

RW 0x0

BCM2711 ARM Peripherals

7.9. PCM Register Map 118



Bits Name Description Type Reset

22 CLKI Clock Invert

This logically inverts the PCM_CLK signal.

0 = Outputs change on rising edge of clock, inputs are

sampled on falling edge.

1 = Outputs change on falling edge of clock, inputs are

sampled on rising edge.

RW 0x0

21 FSM Frame Sync Mode

0 = Master mode. The PCM_FS is an output and we

generate the frame sync.

1 = Slave mode. The PCM_FS is an input and we lock onto

the incoming frame sync signal.

RW 0x0

20 FSI Frame Sync Invert

This logically inverts the frame sync signal.

0 = In master mode, FS is normally low and goes high to

indicate frame sync. In slave mode, the frame starts with

the clock where FS is a 1 after being a 0.

1 = In master mode, FS is normally high and goes low to

indicate frame sync. In slave mode, the frame starts with

the clock where FS is a 0 after being a 1.

RW 0x0

19:10 FLEN Frame Length

Sets the frame length to (FLEN+1) clocks.

1 = frame length of 2 clocks.

2 = frame length of 3 clocks.

etc.

RW 0x000

9:0 FSLEN Frame Sync Length

Sets the frame sync length to (FSLEN) clocks. This is only

used when FSM = 0.

PCM_FS will remain permanently active if FSLEN >= FLEN.

0 = frame sync pulse is off.

1 = frame sync pulse is 1 clock wide.

etc.

RW 0x000

RXC_A Register

Description

Sets the Channel configurations for Receiving. This sets the position and width of the 2 receive channels within the

frame. The two channels cannot overlap, however channel 2 can come after channel 1, although the first data will

always be from the first channel in the frame. Channels can also straddle the frame begin-end boundary (as set by

the frame sync position). This register cannot be changed whilst the PCM is running.

Table 146. RXC_A

Register
Bits Name Description Type Reset

31 CH1WEX Channel 1 Width Extension Bit

This is the MSB of the channel 1 width (CH1WID). It allows

widths greater than 24 bits to be programmed and is added

here to keep backwards compatibility with older versions of

the PCM

RW 0x0

30 CH1EN Channel 1 Enable

0 = Channel 1 disabled and no data is received from

channel 1 and written to the RX FIFO.

1 = Channel 1 enabled.

RW 0x0

BCM2711 ARM Peripherals

7.9. PCM Register Map 119



Bits Name Description Type Reset

29:20 CH1POS Channel 1 Position

This sets the bit clock at which the first bit (MS bit) of

channel 1 data occurs in the frame.

0 indicates the first clock of frame.

RW 0x000

19:16 CH1WID Channel 1 Width

This sets the width of channel 1 in bit clocks. This field has

been extended with the CH1WEX bit giving a total width of

(CH1WEX * 16) + CH1WID + 8. The maximum supported

width is 32 bits.

0 = 8 bits wide

1 = 9 bits wide

etc.

RW 0x0

15 CH2WEX Channel 2 Width Extension Bit

This is the MSB of the channel 2 width (CH2WID). It allows

widths greater than 24 bits to be programmed and is added

here to keep backwards compatibility with older versions of

the PCM

RW 0x0

14 CH2EN Channel 2 Enable

0 = Channel 2 disabled and no data is received from

channel 2 and written to the RX FIFO.

1 = Channel 2 enabled.

RW 0x0

13:4 CH2POS Channel 2 Position

This sets the bit clock at which the first bit (MS bit) of

channel 2 data occurs in the frame.

0 indicates the first clock of frame.

RW 0x000

3:0 CH2WID Channel 2 Width

This sets the width of channel 2 in bit clocks. This field has

been extended with the CH2WEX bit giving a total width of

(CH2WEX * 16) + CH2WID + 8. The maximum supported

width is 32 bits.

0 = 8 bits wide

1 = 9 bits wide

etc.

RW 0x0

TXC_A Register

Description

Sets the Channel configurations for Transmitting. This sets the position and width of the 2 transmit channels within

the frame. The two channels cannot overlap, however channel 2 can come after channel 1, although the first data will

always be used in the first channel in the frame. Channels can also straddle the frame begin-end boundary (as set by

the frame sync position). This register cannot be changed whilst the PCM is running.

Table 147. TXC_A

Register
Bits Name Description Type Reset

31 CH1WEX Channel 1 Width Extension Bit

This is the MSB of the channel 1 width (CH1WID). It allows

widths greater than 24 bits to be programmed and is added

here to keep backwards compatibility with older versions of

the PCM

RW 0x0

BCM2711 ARM Peripherals

7.9. PCM Register Map 120



Bits Name Description Type Reset

30 CH1EN Channel 1 Enable

0 = Channel 1 disabled and no data is taken from the TX

FIFO and transmitted on channel 1.

1 = Channel 1 enabled.

RW 0x0

29:20 CH1POS Channel 1 Position

This sets the bit clock at which the first bit (MS bit) of

channel 1 data occurs in the frame.

0 indicates the first clock of frame.

RW 0x000

19:16 CH1WID Channel 1 Width

This sets the width of channel 1 in bit clocks. This field has

been extended with the CH1WEX bit giving a total width of

(CH1WEX * 16) + CH1WID + 8. The maximum supported

width is 32 bits.

0 = 8 bits wide

1 = 9 bits wide

etc.

RW 0x0

15 CH2WEX Channel 2 Width Extension Bit

This is the MSB of the channel 2 width (CH2WID). It allows

widths greater than 24 bits to be programmed and is added

here to keep backwards compatibility with older versions of

the PCM

RW 0x0

14 CH2EN Channel 2 Enable

0 = Channel 2 disabled and no data is taken from the TX

FIFO and transmitted on channel 2.

1 = Channel 2 enabled.

RW 0x0

13:4 CH2POS Channel 2 Position

This sets the bit clock at which the first bit (MS bit) of

channel 2 data occurs in the frame.

0 indicates the first clock of frame.

RW 0x000

3:0 CH2WID Channel 2 Width

This sets the width of channel 2 in bit clocks. This field has

been extended with the CH2WEX bit giving a total width of

(CH2WEX * 16) + CH2WID + 8. The maximum supported

width is 32 bits.

0 = 8 bits wide

1 = 9 bits wide

etc.

RW 0x0

DREQ_A Register

Description

Set the DMA DREQ and Panic thresholds. The PCM drives 2 DMA controls back to the DMA, one for the TX channel

and one for the RX channel. DMA DREQ is used to request the DMA to perform another transfer, and DMA Panic is

used to tell the DMA to use its panic level of priority when requesting things on the AXI bus. This register cannot be

changed whilst the PCM is running.

Table 148. DREQ_A

Register
Bits Name Description Type Reset

31 Reserved. - - -

BCM2711 ARM Peripherals

7.9. PCM Register Map 121



Bits Name Description Type Reset

30:24 TX_PANIC TX Panic Level

This sets the TX FIFO Panic level. When the level is below

this the PCM will assert its TX DMA Panic signal.

RW 0x10

23 Reserved. - - -

22:16 RX_PANIC RX Panic Level

This sets the RX FIFO Panic level. When the level is above

this the PCM will assert its RX DMA Panic signal.

RW 0x30

15 Reserved. - - -

14:8 TX_REQ TX Request Level

This sets the TX FIFO DREQ level. When the level is below

this the PCM will assert its DMA DREQ signal to request

that more data is written to the TX FIFO.

RW 0x30

7 Reserved. - - -

6:0 RX_REQ RX Request Level

This sets the RX FIFO DREQ level. When the level is above

this the PCM will assert its DMA DREQ signal to request

that some more data is read out of the RX FIFO.

RW 0x20

INTEN_A Register

Description

Set the reasons for generating an Interrupt. This register cannot be changed whilst the PCM is running.

Table 149. INTEN_A

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3 RXERR RX Error Interrupt

Setting this bit enables interrupts from PCM block when RX

FIFO error occurs.

RW 0x0

2 TXERR TX Error Interrupt

Setting this bit enables interrupts from PCM block when TX

FIFO error occurs.

RW 0x0

1 RXR RX Read Interrupt Enable

Setting this bit enables interrupts from PCM block when RX

FIFO level is greater than or equal to the specified RXTHR

level.

RW 0x0

0 TXW TX Write Interrupt Enable

Setting this bit enables interrupts from PCM block when TX

FIFO level is less than the specified TXTHR level.

RW 0x0

INTSTC_A Register

Description

This register is used to read and clear the PCM interrupt status. Writing a 1 to the asserted bit clears the bit. Writing a

0 has no effect.

Table 150. INTSTC_A

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

BCM2711 ARM Peripherals

7.9. PCM Register Map 122



Bits Name Description Type Reset

3 RXERR RX Error Interrupt Status / Clear

This bit indicates an interrupt occurred on RX FIFO Error.

Writing 1 to this bit clears it. Writing 0 has no effect.

W1C 0x0

2 TXERR TX Error Interrupt Status / Clear

This bit indicates an interrupt occurred on TX FIFO Error.

Writing 1 to this bit clears it. Writing 0 has no effect.

W1C 0x0

1 RXR RX Read Interrupt Status / Clear

This bit indicates an interrupt occurred on RX Read.

Writing 1 to this bit clears it. Writing 0 has no effect.

W1C 0x0

0 TXW TX Write Interrupt Status / Clear

This bit indicates an interrupt occurred on TX Write.

Writing 1 to this bit clears it. Writing 0 has no effect.

W1C 0x0

GRAY Register

Description

This register is used to control the gray mode generation. This is used to put the PCM into a special data/strobe

mode. This mode is under 'best effort' contract.

Table 151. GRAY

Register
Bits Name Description Type Reset

31:22 Reserved. - - -

21:16 RXFIFOLEVEL The current level of the RX FIFO

This indicates how many words are currently in the RX

FIFO.

RO 0x00

15:10 FLUSHED The number of bits that were flushed into the RX FIFO

This indicates how many bits were valid when the flush

operation was performed. The valid bits are from bit 0

upwards. Non-valid bits are set to zero.

RO 0x00

9:4 RXLEVEL The current fill level of the RX Buffer

This indicates how many GRAY coded bits have been

received. When 32 bits are received, they are written out

into the RX FIFO.

RO 0x00

3 Reserved. - - -

2 FLUSH Flush the RX Buffer into the RX FIFO

This forces the RX Buffer to do an early write. This is

necessary if we have reached the end of the message and

we have bits left in the RX Buffer. Flushing will write these

bits as a single 32-bit word, starting at bit zero. Empty bits

will be packed with zeros. The number of bits written will be

recorded in the FLUSHED field.

This bit is written as a 1 to initiate a flush. It will read back

as a zero until the flush operation has completed (as the

PCM Clock may be very slow).

RW 0x0

1 CLR Clear the GRAY Mode Logic

This bit will reset all the GRAY mode logic, and flush the RX

buffer. It is not self clearing.

RW 0x0

BCM2711 ARM Peripherals

7.9. PCM Register Map 123



Bits Name Description Type Reset

0 EN Enable GRAY Mode

Setting this bit will put the PCM into GRAY mode. In gray

mode the data is received on the data in and the frame

sync pins. The data is expected to be in data/strobe

format.

RW 0x0

BCM2711 ARM Peripherals

7.9. PCM Register Map 124



Chapter 8. Pulse Width Modulator

8.1. Overview

This section specifies in detail the functionality provided by the device Pulse Width Modulator (PWM) peripherals.

Each PWM controller incorporates the following features:

• Two independent output bit-streams, clocked at a fixed frequency

• Bit-streams configured individually to output either PWM or a serialised version of a 32-bit word

• PWM outputs have variable output resolutions

• Serialise mode configured to read data from a FIFO storage block, which can store up to sixty-four 32-bit words

• Both modes clocked by clk_pwm which is nominally 100MHz, but can be varied by the clock manager

8.2. Block Diagram

Figure 14. PWM block

diagram

The BCM2711 device has two instances of this block, named PWM0 and PWM1 (each with two output channels).

8.3. PWM Implementation

A value represented as a ratio of N/M can be transmitted along a serial channel with pulse width modulation, in which the

value is represented by the duty cycle of the output signal. To send value N/M within a periodic sequence of M cycles,

output should be 1 for N cycles and 0 for (M-N) cycles. The desired sequence should have 1s and 0s spread out as evenly

as possible, so that during any arbitrary period of time the duty cycle achieves the closest approximation of the value. This

can be shown in the following table where 4/8 is modulated (N=4, M=8).

Bad 0 0 0 0 1 1 1 1 0 0 0 0

Fair 0 0 1 1 0 0 1 1 0 0 1 1

Good 0 1 0 1 0 1 0 1 0 1 0 1

Sequence which gives the ‘good’ approximation from the table above can be achieved by the following algorithm:

BCM2711 ARM Peripherals

8.1. Overview 125



 1. Set context = 0
 2. context = context + N
 3. if (context >= M)
        context = context - M
        send 1
    else
        send 0
 4. Repeat from step 2

where context is a register which stores the result of the additions/subtractions.

8.4. Modes of Operation

The PWM controller consists of two independent channels (pwm_chn_i in Figure 14) which implement the PWM algorithm

explained in the previous section. Each channel can operate in either PWM mode or serialiser mode.

PWM mode: There are two sub-modes in PWM mode: MSEN=0 and MSEN=1.

When MSEN=0 (which is the default mode), data to be sent is interpreted as the value N of the algorithm explained above.

The number of clock cycles (range) used to send data is the value M of the algorithm. Pulses are sent within this range so

that the resulting duty cycle is N/M. The channel sends its output continuously as long as the data register is used (USEF

i=0), or the FIFO is used and it is not empty.

When MSEN=1, the PWM channel does not use the algorithm explained above, instead it sends serial data with the M/S

ratio as in Figure 15. M is the data to be sent, and S is the range. This mode may be preferred if high frequency

modulation is not required or has negative effects. The channel sends its output continuously as long as the data register

is used (USEFi=0), or the FIFO is used and it is not empty.

Figure 15. Serial bit

transmission when

M/S Mode enabled

Serialiser mode: Each channel is also capable of working as a serialiser. In this mode data written in the FIFO or the data

register is sent serially.

8.5. Quick Reference

• PWM0 DMA is mapped to DMA channel 5.

• PWM1 DMA is mapped to DMA channel 1 (muxed with DSI0).

• GPIOs are assigned to PWM channels as below. Please refer to the GPIO chapter for further details:

GPIO ALT0 ALT1 ALT2 ALT3 ALT4 ALT5

GPIO12 PWM0_0

GPIO13 PWM0_1

GPIO18 PWM0_0

GPIO19 PWM0_1

GPIO40 PWM1_0

GPIO41 PWM1_1

GPIO45 PWM0_1

BCM2711 ARM Peripherals

8.4. Modes of Operation 126



• PWM clock source and frequency is controlled in CPRMAN.

8.6. Control and Status Registers

The PWM0 register base address is 0x7e20c000 and the PWM1 register base address is 0x7e20c800.

Table 152. PWM

Register Map
Offset Name Description

0x00 CTL PWM Control

0x04 STA PWM Status

0x08 DMAC PWM DMA Configuration

0x10 RNG1 PWM Channel 1 Range

0x14 DAT1 PWM Channel 1 Data

0x18 FIF1 PWM FIFO Input

0x20 RNG2 PWM Channel 2 Range

0x24 DAT2 PWM Channel 2 Data

CTL Register

Description

PWENi is used to enable/disable the corresponding channel. Setting this bit to 1 enables the channel and transmitter

state machine. All registers and FIFOs are writeable without setting this bit.

MODEi bit is used to determine mode of operation. Setting this bit to 0 (the default) enables PWM mode. In this mode

data stored in either PWM_DATi or FIFO is transmitted by pulse width modulation within the range defined by

PWM_RNGi. When this mode is used, MSENi defines whether to use PWM algorithm or M/S transmission. Setting

MODEi to 1 enables serial mode, in which data stored in either PWM_DATi or FIFO is transmitted serially within the

range defined by PWM_RNGi. Data is transmitted MSB first and truncated or zero-padded depending on PWM_RNGi.

RPTLi is used to enable/disable repeating of the last data available in the FIFO just before it empties. When this bit is

1 and FIFO is used, the last available data in the FIFO is repeatedly sent. This may be useful in PWM mode to avoid

duty cycle gaps. If the FIFO is not used this bit does not have any effect. Default operation is do-not-repeat.

SBITi defines the state of the output when no transmission takes place. It also defines the zero polarity for the zero

padding in serialiser mode. This bit is padded between two consecutive transfers as well as tail of the data when

PWM_RNGi is larger than bit depth of data being transferred. This bit is zero by default.

POLAi is used to configure the polarity of the output bit. When set to high the final output is inverted. Default

operation is no inversion.

USEFi bit is used to enable/disable FIFO transfer. When this bit is high data stored in the FIFO is used for

transmission. When it is low, data written to PWM_DATi is transferred. This bit is 0 by default.

CLRF is used to clear the FIFO. Writing a 1 to this bit clears the FIFO. Writing 0 has no effect. This is a one-shot

operation and reading the bit always returns 0.

MSENi is used to determine whether to use PWM algorithm or simple M/S ratio transmission. When this bit is high

M/S transmission is used. This bit is zero by default. When MODEi is 1, this configuration bit has no effect.

Table 153. CTL

Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15 MSEN2 Channel 2 M/S Enable

0: PWM algorithm is used

1: M/S transmission is used.

RW 0x0

14 Reserved. - - -

BCM2711 ARM Peripherals

8.6. Control and Status Registers 127



Bits Name Description Type Reset

13 USEF2 Channel 2 Use FIFO

0: Data register is transmitted

1: FIFO is used for transmission

RW 0x0

12 POLA2 Channel 2 Polarity

0 : 0=low 1=high

1: 1=low 0=high

RW 0x0

11 SBIT2 Channel 2 Silence Bit

Defines the state of the output when no transmission takes

place

RW 0x0

10 RPTL2 Channel 2 Repeat Last Data

0: Transmission interrupts when FIFO is empty

1: Last data in FIFO is transmitted repeatedly until FIFO is

not empty

RW 0x0

9 MODE2 Channel 2 Mode

0: PWM mode

1: Serialiser mode

RW 0x0

8 PWEN2 Channel 2 Enable

0: Channel is disabled

1: Channel is enabled

RW 0x0

7 MSEN1 Channel 1 M/S Enable

0: PWM algorithm is used

1: M/S transmission is used.

RW 0x0

6 CLRF Clear FIFO

1: Clears FIFO

0: Has no effect

This is a one-shot operation. This bit always reads 0

W1SC 0x0

5 USEF1 Channel 1 Use FIFO

0: Data register is transmitted

1: FIFO is used for transmission

RW 0x0

4 POLA1 Channel 1 Polarity

0 : 0=low 1=high

1: 1=low 0=high

RW 0x0

3 SBIT1 Channel 1 Silence Bit

Defines the state of the output when no transmission takes

place

RW 0x0

2 RPTL1 Channel 1 Repeat Last Data

0: Transmission interrupts when FIFO is empty

1: Last data in FIFO is transmitted repeatedly until FIFO is

not empty

RW 0x0

1 MODE1 Channel 1 Mode

0: PWM mode

1: Serialiser mode

RW 0x0

0 PWEN1 Channel 1 Enable

0: Channel is disabled

1: Channel is enabled

RW 0x0

STA Register

BCM2711 ARM Peripherals

8.6. Control and Status Registers 128



Description

FULL1 bit indicates the full status of the FIFO. If this bit is high the FIFO is full.

EMPT1 bit indicates the empty status of the FIFO. If this bit is high the FIFO is empty.

WERR1 bit is set to high when a write-when-full error occurs. Software must clear this bit by writing 1. Writing 0 to this

bit has no effect.

RERR1 bit is set to high when a read-when-empty error occurs. Software must clear this bit by writing 1. Writing 0 to

this bit has no effect.

GAPOi bit indicates that there has been a gap between transmission of two consecutive data from FIFO. This may

happen when the FIFO becomes empty after the state machine has sent a word and is waiting for the next word. If

control bit RPTLi is set to high this event will not occur. Software must clear this bit by writing 1. Writing 0 to this bit

has no effect.

BERR is set to high when an error has occurred while writing to registers via APB. This may happen if the bus tries to

write successively to same set of registers faster than the synchroniser block can cope with. Multiple switching may

occur and contaminate the data during synchronisation. Software should clear this bit by writing 1. Writing 0 to this

bit has no effect.

STAi bit indicates the current state of the channel, which is useful for debugging purposes. 0 means the channel is

not currently transmitting, 1 means channel is transmitting data.

Table 154. STA

Register
Bits Name Description Type Reset

31:11 Reserved. - - -

10 STA2 Channel 2 State RO 0x0

9 STA1 Channel 1 State RO 0x0

8 BERR Bus Error Flag W1C 0x0

7:6 Reserved. - - -

5 GAPO2 Channel 2 Gap Occurred Flag W1C 0x0

4 GAPO1 Channel 1 Gap Occurred Flag W1C 0x0

3 RERR1 FIFO Read Error Flag W1C 0x0

2 WERR1 FIFO Write Error Flag W1C 0x0

1 EMPT1 FIFO Empty Flag RO 0x1

0 FULL1 FIFO Full Flag RO 0x0

DMAC Register

Description

ENAB bit is used to start DMA.

PANIC bits are used to determine the threshold level for PANIC signal going active. Default value is 7.

DREQ bits are used to determine the threshold level for DREQ signal going active. Default value is 7.

Table 155. DMAC

Register
Bits Name Description Type Reset

31 ENAB DMA Enable

0: DMA disabled

1: DMA enabled

RW 0x0

30:16 Reserved. - - -

15:8 PANIC DMA Threshold for PANIC signal RW 0x07

7:0 DREQ DMA Threshold for DREQ signal RW 0x07

RNG1, RNG2 Registers

BCM2711 ARM Peripherals

8.6. Control and Status Registers 129



Description

This register is used to define the range for the corresponding channel. In PWM mode, evenly distributed pulses are

sent within a period of length defined by this register. In serial mode, serialised data is transmitted within the same

period. If the value in PWM_RNGi is less than 32, only the first PWM_RNGi bits are sent resulting in a truncation. If it is

larger than 32, excess zero bits are padded at the end of data. Default value for this register is 32.

Table 156. RNG1,

RNG2 Registers
Bits Name Description Type Reset

31:0 PWM_RNGi Channel i Range RW 0x00000020

DAT1, DAT2 Registers

Description

This register stores the 32-bit data to be sent by the PWM Controller when USEFi is 0. In PWM mode, data is sent by

pulse width modulation: the value of this register defines the number of pulses which are sent within the period

defined by PWM_RNGi. In serialiser mode, data stored in this register is serialised and transmitted.

Table 157. DAT1,

DAT2 Registers
Bits Name Description Type Reset

31:0 PWM_DATi Channel i Data RW 0x00000000

FIF1 Register

Description

This register is the FIFO input for both the channels. Data written to this address is stored in the FIFO and if USEFi is

enabled for channel i it is used as data to be sent. This register is write-only, and reading this register will always

return bus default return value, pwm0.

When more than one channel is enabled for FIFO usage, the data written into the FIFO is shared between these

channels in turn. For example if the word series A B C D E F G H I .. is written to the FIFO and both channels are active

and configured to use FIFO, then channel 1 will transmit words A C E G I .. and channel 2 will transmit words B D F H ..

.

Note that requesting data from the FIFO is in locked-step manner and therefore requires tight coupling of state

machines of the channels. If the channel range (period) value of one channel is different to the other, this will cause

the channel with the smaller range value to wait between words, hence resulting in gaps between words. To avoid

that, each channel sharing the FIFO should be configured to use the same range value.

Also note that the RPTLi bits are not meaningful when the FIFO is shared between channels as there is no defined

channel to own the last data in the FIFO. Therefore sharing channels must have their RPTLi bit set to zero.

If the set of channels sharing the FIFO has been modified after a configuration change, the FIFO should be cleared

before writing new data.

Table 158. FIF1

Register
Bits Name Description Type Reset

31:0 PWM_FIFO Channel FIFO Input WO 0x00000000

BCM2711 ARM Peripherals

8.6. Control and Status Registers 130



Chapter 9. SPI

9.1. Overview

This serial interface peripheral supports the following features:

• Implements a 3 wire serial protocol, variously called Serial Peripheral Interface (SPI) or Synchronous Serial Protocol

(SSP).

• Implements a 2 wire version of SPI that uses a single wire as a bidirectional data wire instead of one for each

direction as in standard SPI.

• Implements a LoSSI Master (Low Speed Serial Interface).

• Provides support for polled, interrupt or DMA operation.

9.2. SPI Master Mode

9.2.1. Standard mode

In standard SPI master mode the peripheral implements the standard 3 wire serial protocol described below.

Figure 16. SPI Master

Typical Usage

Figure 17. SPI Cycle

BCM2711 ARM Peripherals

9.1. Overview 131



Figure 18. Different

Clock Polarity/Phase

9.2.2. Bidirectional mode

In bidirectional SPI master mode the same SPI standard is implemented except that a single wire is used for the data

(MIMO) instead of two as in standard mode (MISO and MOSI). Bidirectional mode is used in a similar way to standard

mode, the only difference is that before attempting to read data from the slave, you must set the read enable (SPI_REN)

bit in the SPI control and status register (SPI_CS). This will turn the bus around, and when you write to the SPI_FIFO

register (with junk) a read transaction will take place on the bus, and the read data will appear in the FIFO.

Figure 19.

Bidirectional SPI

Master Typical Usage

9.3. LoSSI mode

Figure 20. LoSSI mode

Typical usage

The LoSSI standard allows us to issue commands to peripherals and to transfer data to and from them. LoSSI commands

and parameters are 8 bits long, but an extra bit is used to indicate whether the byte is a command or data. This extra bit is

set high for a parameter and low for a command. The resulting 9-bit value is serialized to the output. When reading from a

LoSSI peripheral the standard allows us to read bytes of data, as well as 24- and 32-bit words.

Commands and parameters are issued to a LoSSI peripheral by writing the 9-bit value of the command or data into the

SPI_FIFO register as you would for SPI mode. Reads are automated in that if the serial interface peripheral detects a read

command being issued, it will issue the command and complete the read transaction, putting the received data into the

FIFO.

BCM2711 ARM Peripherals

9.3. LoSSI mode 132



9.3.1. Command write

9.3.2. Parameter write

9.3.3. Byte read commands

Byte read commands are 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xda, 0xdb, 0xdc.

9.3.4. 24-bit read command

A 24-bit read can be achieved by using the command 0x04.

9.3.5. 32-bit read command

A 32-bit read can be achieved by using the command 0x09.

9.4. Block Diagram

BCM2711 ARM Peripherals

9.4. Block Diagram 133



Figure 21. Serial

interface Block

Diagram

9.5. SPI Register Map

The BCM2711 device has five SPI interfaces of this type: SPI0, SPI3, SPI4, SPI5 & SPI6. It has two additional mini SPI

interfaces (SPI1 and SPI2). The specification of those can be found under Section 2.3.

The base addresses of these SPI interfaces are

• SPI0: 0x7e204000

• SPI3: 0x7e204600

• SPI4: 0x7e204800

• SPI5: 0x7e204a00

• SPI6: 0x7e204c00

Table 159. SPI

Register Map
Offset Name Description

0x00 CS SPI Master Control and Status

0x04 FIFO SPI Master TX and RX FIFOs

0x08 CLK SPI Master Clock Divider

0x0c DLEN SPI Master Data Length

0x10 LTOH SPI LoSSI mode TOH

0x14 DC SPI DMA DREQ Controls

CS Register

Description

This register contains the main control and status bits for the SPI.

Table 160. CS Register
Bits Name Description Type Reset

31:26 Reserved. - - -

25 LEN_LONG Enable Long data word in LoSSI mode if DMA_LEN is set

0= writing to the FIFO will write a single byte

1= writing to the FIFO will write a 32-bit word

RW 0x0

24 DMA_LEN Enable DMA mode in LoSSI mode RW 0x0

BCM2711 ARM Peripherals

9.5. SPI Register Map 134



Bits Name Description Type Reset

23 CSPOL2 Chip Select 2 Polarity

0= Chip select is active low.

1= Chip select is active high.

RW 0x0

22 CSPOL1 Chip Select 1 Polarity

0= Chip select is active low.

1= Chip select is active high.

RW 0x0

21 CSPOL0 Chip Select 0 Polarity

0= Chip select is active low.

1= Chip select is active high.

RW 0x0

20 RXF RX FIFO Full

0 = RX FIFO is not full.

1 = RX FIFO is full. No further serial data will be sent /

received until data is read from FIFO.

RO 0x0

19 RXR RX FIFO needs Reading (¾ full)

0 = RX FIFO is less than ¾ full (or not active TA = 0).

1 = RX FIFO is ¾ or more full. Cleared by reading sufficient

data from the RX FIFO or setting TA to 0.

RO 0x0

18 TXD TX FIFO can accept Data

0 = TX FIFO is full and so cannot accept more data.

1 = TX FIFO has space for at least 1 byte.

RO 0x1

17 RXD RX FIFO contains Data

0 = RX FIFO is empty.

1 = RX FIFO contains at least 1 byte.

RO 0x0

16 DONE Transfer Done

0 = Transfer is in progress (or not active TA = 0).

1 = Transfer is complete. Cleared by writing more data to

the TX FIFO or setting TA to 0.

RO 0x0

15 TE_EN Unused RW 0x0

14 LMONO Unused RW 0x0

13 LEN LoSSI enable

The serial interface is configured as a LoSSI master.

0 = The serial interface will behave as an SPI master.

1 = The serial interface will behave as a LoSSI master.

RW 0x0

12 REN Read Enable

Read enable if you are using bidirectional mode. If this bit is

set, the SPI peripheral will be able to send data to this

device.

0 = We intend to write to the SPI peripheral.

1 = We intend to read from the SPI peripheral.

RW 0x1

11 ADCS Automatically De-assert Chip Select

0 = Don’t automatically de-assert chip select at the end of a

DMA transfer; chip select is manually controlled by

software.

1 = Automatically de-assert chip select at the end of a DMA

transfer (as determined by SPIDLEN)

RW 0x0

BCM2711 ARM Peripherals

9.5. SPI Register Map 135



Bits Name Description Type Reset

10 INTR Interrupt on RXR

0 = Don’t generate interrupts on RX FIFO condition.

1 = Generate interrupt while RXR = 1.

RW 0x0

9 INTD Interrupt on Done

0 = Don’t generate interrupt on transfer complete.

1 = Generate interrupt when DONE = 1.

RW 0x0

8 DMAEN DMA Enable

0 = No DMA requests will be issued.

1 = Enable DMA operation.

Peripheral generates data requests. These will be taken in

four-byte words until the SPIDLEN has been reached.

RW 0x0

7 TA Transfer Active

0 = Transfer not active. /CS lines are all high (assuming

CSPOL = 0). RXR and DONE are 0. Writes to SPI_FIFO write

data into bits 15:0 of SPIDLEN and bits 7:0 of SPICS

allowing DMA data blocks to set mode before sending

data.

1 = Transfer active. /CS lines are set according to CS bits

and CSPOL. Writes to SPI_FIFO write data to TX FIFO. TA is

cleared by a dma_frame_end pulse from the DMA

controller.

RW 0x0

6 CSPOL Chip Select Polarity

0 = Chip select lines are active low

1 = Chip select lines are active high

RW 0x0

5:4 CLEAR FIFO Clear

00 = No action.

x1 = Clear TX FIFO. One-shot operation.

1x = Clear RX FIFO. One-shot operation.

If CLEAR and TA are both set in the same operation, the

FIFOs are cleared before the new frame is started. Read

back as 0.

W1SC 0x0

3 CPOL Clock Polarity

0 = Rest state of clock = low.

1 = Rest state of clock = high.

RW 0x0

2 CPHA Clock Phase

0 = First SCLK transition at middle of data bit.

1 = First SCLK transition at beginning of data bit.

RW 0x0

1:0 CS Chip Select

00 = Chip select 0

01 = Chip select 1

10 = Chip select 2

11 = Reserved

RW 0x0

FIFO Register

Description

This register allows TX data to be written to the TX FIFO and RX data to be read from the RX FIFO.

BCM2711 ARM Peripherals

9.5. SPI Register Map 136



Table 161. FIFO

Register
Bits Name Description Type Reset

31:0 DATA DMA Mode (DMAEN set)

If TA is clear, the first 32-bit write to this register will control

SPIDLEN and SPICS. Subsequent reads and writes will be

taken as four-byte data words to be read/written to the

FIFOs

Poll/Interrupt Mode (DMAEN clear, TA set)

Writes to the register write bytes to TX FIFO. Reads from

register read bytes from the RX FIFO

RW 0x00000000

CLK Register

Description

This register allows the SPI clock rate to be set.

Table 162. CLK

Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 CDIV Clock Divider

SCLK = Core Clock / CDIV

If CDIV is set to 0, the divisor is 65536. The divisor must be

a multiple of 2. Odd numbers rounded down. The

maximum SPI clock rate is of the APB clock.

RW 0x0000

DLEN Register

Description

This register allows the SPI data length rate to be set.

Table 163. DLEN

Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 LEN Data Length

The number of bytes to transfer.

This field is only valid for DMA mode (DMAEN set) and

controls how many bytes to transmit (and therefore

receive).

RW 0x0000

LTOH Register

Description

This register allows the LoSSI output hold delay to be set.

Table 164. LTOH

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3:0 TOH This sets the Output Hold delay in APB clocks. A value of 0

causes a 1 clock delay.

RW 0x1

DC Register

Description

This register controls the generation of the DREQ and Panic signals to an external DMA engine. The DREQ signals are

generated when the FIFOs reach their defined levels and need servicing. The Panic signals instruct the external DMA

engine to raise the priority of its AXI requests.

BCM2711 ARM Peripherals

9.5. SPI Register Map 137



Table 165. DC Register
Bits Name Description Type Reset

31:24 RPANIC DMA Read Panic Threshold.

Generate the Panic signal to the RX DMA engine whenever

the RX FIFO level is greater than this amount.

RW 0x30

23:16 RDREQ DMA Read Request Threshold.

Generate a DREQ to the RX DMA engine whenever the RX

FIFO level is greater than this amount (RX DREQ is also

generated if the transfer has finished but the RX FIFO isn’t

empty).

RW 0x20

15:8 TPANIC DMA Write Panic Threshold.

Generate the Panic signal to the TX DMA engine whenever

the TX FIFO level is less than or equal to this amount.

RW 0x10

7:0 TDREQ DMA Write Request Threshold.

Generate a DREQ signal to the TX DMA engine whenever

the TX FIFO level is less than or equal to this amount.

RW 0x20

9.6. Software Operation

9.6.1. Polled

1. Set CS, CPOL, CPHA as required and set TA = 1

2. Poll TXD writing bytes to SPI_FIFO, RXD reading bytes from SPI_FIFO until all data written

3. Poll DONE until it goes to 1

4. Set TA = 0

9.6.2. Interrupt

1. Set INTR and INTD. These can be left set over multiple operations.

2. Set CS, CPOL, CPHA as required and set TA = 1. This will immediately trigger a first interrupt with DONE = 1.

3. On interrupt:

◦ If DONE is set and data to write (this means it is the first interrupt), write up to 64 bytes to SPI_FIFO. If DONE is

set and no more data, set TA = 0. Read trailing data from SPI_FIFO until RXD is 0.

◦ If RXR is set read 48 bytes data from SPI_FIFO and if more data to write, write up to 48 bytes to SPI_FIFO.

9.6.3. DMA

Note: In order to function correctly, each DMA channel must be set to perform 32-bit transfers when communicating with

the SPI. Either the Source or the Destination Transfer Width field in the DMA TI register must be set to 0 (i.e. 32-bit words)

depending upon whether the channel is reading or writing to the SPI. Two DMA channels are required, one to read from

and one to write to the SPI.

1. Enable DMA DREQs by setting the DMAEN bit and ADCS if required.

2. Program two DMA Control Blocks, one for each DMA controller.

3. DMA channel 1 Control Block should have its PERMAP set to SPIn TX and should be set to write ‘transfer length’ + 1

words to SPI_FIFO. The data should comprise:

BCM2711 ARM Peripherals

9.6. Software Operation 138



a. A word with the transfer length in bytes in the top sixteen bits, and the control register settings [7:0] in the

bottom eight bits (i.e. TA = 1, CS, CPOL, CPHA as required.).

b. ‘Transfer length’ number in words of data to send.

4. DMA channel 2 Control Block should have its PERMAP set to SPIn RX and should be set to read ‘transfer length’

words from SPI_FIFO.

5. Point each DMA channel at its CB and set its ACTIVE bit to 1.

6. On receipt of an interrupt from DMA channel 2, the transfer is complete.

9.6.4. Notes

1. The SPI Master knows nothing of the peripherals it is connected to. It always both sends and receives bytes for every

byte of the transaction.

2. SCLK is only generated during byte serial transfer. It pauses in the rest state if the next byte to send is not ready or

RXF is set.

3. Setup and Hold times related to the automatic assertion and de-assertion of the CS lines when operating in DMA

mode (DMAEN and ADCS set) are as follows:

◦ The CS line will be asserted at least 3 core clock cycles before the MSB of the first byte of the transfer.

◦ The CS line will be de-asserted no earlier than 1 core clock cycle after the trailing edge of the final clock pulse.

◦ If these parameters are insufficient, software control should alleviate the problem. ADCS should be 0 allowing

software to manually control the assertion and de-assertion of the CS lines.

BCM2711 ARM Peripherals

9.6. Software Operation 139



Chapter 10. System Timer

10.1. Overview

The System Timer peripheral provides four 32-bit timer channels and a single 64-bit free running counter. Each channel

has an output compare register, which is compared against the 32 least significant bits of the free running counter values.

When the two values match, the system timer peripheral generates a signal to indicate a match for the appropriate

channel. The match signal is then fed into the interrupt controller. The interrupt service routine then reads the output

compare register and adds the appropriate offset for the next timer tick. The free running counter is driven by the timer

clock and stopped whenever the processor is stopped in debug mode.

The physical (hardware) base address for the system timers is 0x7e003000.

10.2. System Timer Registers

Table 166. System

Timer Registers
Offset Name Description

0x00 CS System Timer Control/Status

0x04 CLO System Timer Counter Lower 32 bits

0x08 CHI System Timer Counter Higher 32 bits

0x0c C0 System Timer Compare 0

0x10 C1 System Timer Compare 1

0x14 C2 System Timer Compare 2

0x18 C3 System Timer Compare 3

CS Register

Description

System Timer Control / Status.

This register is used to record and clear timer channel comparator matches. The system timer match bits are routed

to the interrupt controller where they can generate an interrupt.

The M0-3 fields contain the free-running counter match status. Write a one to the relevant bit to clear the match

detect status bit and the corresponding interrupt request line.

Table 167. CS Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3 M3 System Timer Match 3

0 = No Timer 3 match since last cleared.

1 = Timer 3 match detected.

W1C 0x0

2 M2 System Timer Match 2

0 = No Timer 2 match since last cleared.

1 = Timer 2 match detected.

W1C 0x0

1 M1 System Timer Match 1

0 = No Timer 1 match since last cleared.

1 = Timer 1 match detected.

W1C 0x0

BCM2711 ARM Peripherals

10.1. Overview 140



Bits Name Description Type Reset

0 M0 System Timer Match 0

0 = No Timer 0 match since last cleared.

1 = Timer 0 match detected.

W1C 0x0

CLO Register

Description

System Timer Counter Lower bits.

The system timer free-running counter lower register is a read-only register that returns the current value of the lower

32-bits of the free running counter.

Table 168. CLO

Register
Bits Name Description Type Reset

31:0 CNT Lower 32-bits of the free running counter value. RO 0x00000000

CHI Register

Description

System Timer Counter Higher bits.

The system timer free-running counter higher register is a read-only register that returns the current value of the

higher 32-bits of the free running counter.

Table 169. CHI

Register
Bits Name Description Type Reset

31:0 CNT Higher 32-bits of the free running counter value. RO 0x00000000

C0, C1, C2, C3 Registers

Description

System Timer Compare.

The system timer compare registers hold the compare value for each of the four timer channels. Whenever the lower

32-bits of the free-running counter matches one of the compare values the corresponding bit in the system timer

control/status register is set.

Table 170. C0, C1, C2,

C3 Registers
Bits Name Description Type Reset

31:0 CMP Compare value for match channel n. RW 0x00000000

BCM2711 ARM Peripherals

10.2. System Timer Registers 141



Chapter 11. UART

11.1. Overview

The BCM2711 device has six UARTs. One mini UART (UART1) and five PL011 UARTs (UART0, UART2, UART3, UART4 &

UART5). This section describes the PL011 UARTs. For details of the mini UART see Section 2.2.

The PL011 UART is a Universal Asynchronous Receiver/Transmitter. This is the ARM UART (PL011) implementation. The

UART performs serial-to-parallel conversion on data characters received from an external peripheral device or modem,

and parallel-to-serial conversion on data characters received from the Advanced Peripheral Bus (APB).

The ARM PL011 UART has some optional functionality which can be included or left out.

The following functionality is not supported :

• Infrared Data Association (IrDA)

• Serial InfraRed (SIR) protocol Encoder/Decoder (ENDEC)

The UARTs provide:

• Separate 32x8 transmit and 32x12 receive FIFO memory.

• Programmable baud rate generator.

• Standard asynchronous communication bits (start, stop and parity). These are added prior to transmission and

removed on reception.

• False start bit detection.

• Line break generation and detection.

• Support of the modem control functions CTS and RTS. However DCD, DSR, DTR, and RI are not supported.

• Programmable hardware flow control.

• Fully-programmable serial interface characteristics:

◦ data can be 5, 6, 7, or 8 bits.

◦ even, odd, stick, or no-parity bit generation and detection.

◦ 1 or 2 stop bit generation.

◦ baud rate generation, up to UARTCLK/16.

The UART clock source and associated dividers are controlled by the Clock Manager.

For the in-depth UART overview, please refer to the ARM PrimeCell UART (PL011) Revision: r1p5 Technical Reference

Manual.

11.2. Variations from the 16C650 UART

The UART varies from the industry-standard 16C650 UART device as follows:

• Receive FIFO trigger levels are 1/8, 1/4, 1/2, 3/4, and 7/8

• Transmit FIFO trigger levels are 1/8, 1/4, 1/2, 3/4, and 7/8

• The internal register map address space, and the bit function of each register differ

• The deltas of the modem status signals are not available

The following 16C650 UART features are not supported:

BCM2711 ARM Peripherals

11.1. Overview 142



• 1.5 stop bits (1 or 2 stop bits only are supported)

• Independent receive clock

11.3. Primary UART Inputs and Outputs

The UARTs have two primary inputs (RXD, nCTS) and two primary outputs (TXD, nRTS). The remaining signals (like SRIN,

SROUT, OUT1, OUT2, DSR, DTR, and RI) are not supported in this implementation. The following table shows how the

various UART signals (including the mini UART) map on the General Purpose I/O (GPIO). For more details on how to

select alternate functions refer to Chapter 5.

Table 171. UART

Assignment on the

GPIO Pin map

Pull ALT0 ALT1 ALT2 ALT3 ALT4 ALT5

GPIO0 High TXD2

GPIO1 High RXD2

GPIO2 High CTS2

GPIO3 High RTS2

GPIO4 High TXD3

GPIO5 High RXD3

GPIO6 High CTS3

GPIO7 High RTS3

GPIO8 High TXD4

GPIO9 High RXD4

GPIO10 High CTS4

GPIO11 High RTS4

GPIO12 High TXD5

GPIO13 High RXD5

GPIO14 Low TXD0 CTS5

GPIO15 Low RXD0 RTS5

GPIO16 Low CTS0

GPIO17 Low RTS0

GPIO30 Low CTS0 CTS1

GPIO31 Low RTS0 RTS1

GPIO32 Low TXD0 TXD1

GPIO33 Low RXD0 RXD1

GPIO36 High TXD0

GPIO37 Low RXD0

GPIO38 Low RTS0

GPIO39 Low CTS0

GPIO40 Low TXD1

GPIO41 Low RXD1

BCM2711 ARM Peripherals

11.3. Primary UART Inputs and Outputs 143



Pull ALT0 ALT1 ALT2 ALT3 ALT4 ALT5

GPIO42 Low RTS1

GPIO43 Low CTS1

11.4. UART Interrupts

Each UART has one intra-chip interrupt UARTINTR generated as the OR-ed function of its five individual interrupts.

UARTINTR, this is an OR function of the five individual masked outputs:

• UARTRXINTR

• UARTTXINTR

• UARTRTINTR

• UARTMSINTR, that can be caused by:

◦ UARTCTSINTR, because of a change in the nUARTCTS modem status

◦ UARTDSRINTR, because of a change in the nUARTDSR modem status

• UARTEINTR, that can be caused by an error in the reception:

◦ UARTOEINTR, because of an overrun error

◦ UARTBEINTR, because of a break in the reception

◦ UARTPEINTR, because of a parity error in the received character

◦ UARTFEINTR, because of a framing error in the received character

One can enable or disable the individual interrupts by changing the mask bits in the Interrupt Mask Set/Clear Register,

UART_IMSC. Setting the appropriate mask bit HIGH enables the interrupt.

UARTTXINTR

The transmit interrupt changes state when one of the following events occurs:

• If the FIFOs are enabled and the transmit FIFO is equal to or lower than the programmed trigger level then the

transmit interrupt is asserted HIGH. The transmit interrupt is cleared by writing data to the transmit FIFO until it

becomes greater than the trigger level, or by clearing the interrupt.

• If the FIFOs are disabled (have a depth of one location) and there is no data present in the transmitter’s single

location, the transmit interrupt is asserted HIGH. It is cleared by performing a single write to the transmit FIFO,

or by clearing the interrupt.

UARTRXINTR

The receive interrupt changes state when one of the following events occurs:

• If the FIFOs are enabled and the receive FIFO reaches the programmed trigger level. When this happens, the

receive interrupt is asserted HIGH. The receive interrupt is cleared by reading data from the receive FIFO until it

becomes less than the trigger level, or by clearing the interrupt.

• If the FIFOs are disabled (have a depth of one location) and data is received thereby filling the location, the

receive interrupt is asserted HIGH. The receive interrupt is cleared by performing a single read of the receive

FIFO, or by clearing the interrupt.

11.5. Register View

The PL011 UARTs are mapped onto the following base addresses:

BCM2711 ARM Peripherals

11.4. UART Interrupts 144



• UART0: 0x7e201000

• UART2: 0x7e201400

• UART3: 0x7e201600

• UART4: 0x7e201800

• UART5: 0x7e201a00

They have the following memory-mapped registers.

Table 172. UART

Registers
Offset Name Description

0x00 DR Data Register

0x04 RSRECR

0x18 FR Flag register

0x20 ILPR not in use

0x24 IBRD Integer Baud rate divisor

0x28 FBRD Fractional Baud rate divisor

0x2c LCRH Line Control register

0x30 CR Control register

0x34 IFLS Interrupt FIFO Level Select Register

0x38 IMSC Interrupt Mask Set Clear Register

0x3c RIS Raw Interrupt Status Register

0x40 MIS Masked Interrupt Status Register

0x44 ICR Interrupt Clear Register

0x48 DMACR DMA Control Register

0x80 ITCR Test Control register

0x84 ITIP Integration test input reg

0x88 ITOP Integration test output reg

0x8c TDR Test Data reg

DR Register

Description

The UART_DR Register is the data register.

For words to be transmitted:

if the FIFOs are enabled, data written to this location is pushed onto the transmit FIFO.

if the FIFOs are not enabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO).

The write operation initiates transmission from the UART. The data is prefixed with a start bit, appended with the

appropriate parity bit (if parity is enabled), and a stop bit. The resultant word is then transmitted.

For received words:

if the FIFOs are enabled, the data byte and the 4-bit status (break, frame, parity, and overrun) is pushed onto the 12-bit

wide receive FIFO

if the FIFOs are not enabled, the data byte and status are stored in the receiving holding register (the bottom word of

the receive FIFO).

BCM2711 ARM Peripherals

11.5. Register View 145



Table 173. DR Register
Bits Name Description Type Reset

31:12 Reserved. - - -

11 OE Overrun error. This bit is set to 1 if data is received and the

receive FIFO is already full.

This is cleared to 0 once there is an empty space in the

FIFO and a new character can be written to it.

RO 0x0

10 BE Break error. This bit is set to 1 if a break condition was

detected, indicating that the received data input was held

LOW for longer than a full-word transmission time (defined

as start, data, parity and stop bits).

In FIFO mode, this error is associated with the character at

the top of the FIFO. When a break occurs, only one 0

character is loaded into the FIFO. The next character is only

enabled after the receive data input goes to a 1 (marking

state), and the next valid start bit is received.

RO 0x0

9 PE Parity error. When set to 1, it indicates that the parity of the

received data character does not match the parity that the

EPS and SPS bits in the Line Control Register, UART_LCRH

select.

In FIFO mode, this error is associated with the character at

the top of the FIFO.

RO 0x0

8 FE Framing error. When set to 1, it indicates that the received

character did not have a valid stop bit (a valid stop bit is 1).

In FIFO mode, this error is associated with the character at

the top of the FIFO.

RO 0x0

7:0 DATA Receive (read) data character.

Transmit (write) data character.

RW 0x00

RSRECR Register

Description

The UART_RSRECR Register is the receive status register/error clear register. If the status is read from this register,

then the status information for break, framing and parity corresponds to the data character read from the Data

Register, UART_DR. The status information for overrun is set immediately when an overrun condition occurs. NOTE:

The received data character must be read first from the Data Register UART_DR, before reading the error status

associated with that data character from this register.

Table 174. RSRECR

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3 OE Overrun error. This bit is set to 1 if data is received and the

receive FIFO is already full.

This is cleared to 0 once there is an empty space in the

FIFO and a new character can be written to it.

RW 0x0

BCM2711 ARM Peripherals

11.5. Register View 146



Bits Name Description Type Reset

2 BE Break error. This bit is set to 1 if a break condition was

detected, indicating that the received data input was held

LOW for longer than a full-word transmission time (defined

as start, data, parity and stop bits).

In FIFO mode, this error is associated with the character at

the top of the FIFO. When a break occurs, only one 0

character is loaded into the FIFO. The next character is only

enabled after the receive data input goes to a 1 (marking

state), and the next valid start bit is received.

RW 0x0

1 PE Parity error. When set to 1, it indicates that the parity of the

received data character does not match the parity that the

EPS and SPS bits in the Line Control Register, UART_LCRH

select.

In FIFO mode, this error is associated with the character at

the top of the FIFO.

RW 0x0

0 FE Framing error. When set to 1, it indicates that the received

character did not have a valid stop bit (a valid stop bit is 1).

In FIFO mode, this error is associated with the character at

the top of the FIFO.

RW 0x0

FR Register

Description

The UART_FR Register is the flag register.

Table 175. FR Register
Bits Name Description Type Reset

31:9 Reserved. - - -

8 RI Unsupported, write zero, read as don’t care RO 0x0

7 TXFE Transmit FIFO empty. The meaning of this bit depends on

the state of the FEN bit in the Line Control Register,

UART_LCRH.

If the FIFO is disabled, this bit is set when the transmit

holding register is empty.

If the FIFO is enabled, the TXFE bit is set when the transmit

FIFO is empty. This bit does not indicate if there is data in

the transmit shift register.

RO 0x1

6 RXFF Receive FIFO full. The meaning of this bit depends on the

state of the FEN bit in the UART_LCRH Register.

If the FIFO is disabled, this bit is set when the receive

holding register is full.

If the FIFO is enabled, the RXFF bit is set when the receive

FIFO is full.

RO 0x0

5 TXFF Transmit FIFO full. The meaning of this bit depends on the

state of the FEN bit in the UART_LCRH Register.

If the FIFO is disabled, this bit is set when the transmit

holding register is full.

If the FIFO is enabled, the TXFF bit is set when the transmit

FIFO is full.

RO 0x0

BCM2711 ARM Peripherals

11.5. Register View 147



Bits Name Description Type Reset

4 RXFE Receive FIFO empty. The meaning of this bit depends on

the state of the FEN bit in the UART_LCRH Register.

If the FIFO is disabled, this bit is set when the receive

holding register is empty.

If the FIFO is enabled, the RXFE bit is set when the receive

FIFO is empty.

RO 0x0

3 BUSY UART busy. If this bit is set to 1, the UART is busy

transmitting data. This bit remains set until the complete

byte, including all the stop bits, has been sent from the shift

register.

This bit is set as soon as the transmit FIFO becomes non-

empty, regardless of whether the UART is enabled or not.

RO 0x0

2 DCD Unsupported, write zero, read as don’t care RO 0x0

1 DSR Unsupported, write zero, read as don’t care RO 0x0

0 CTS Clear to send. This bit is the complement of the UART clear

to send, nUARTCTS, modem status input. That is, the bit is

1 when nUARTCTS is LOW.

RO 0x0

ILPR Register

Description

This is the disabled IrDA register, writing to it has no effect and reading returns 0.

Table 176. ILPR

Register
Bits Name Description Type Reset

31:0 Reserved. - - -

IBRD Register

Description

The UART_IBRD Register is the integer part of the baud rate divisor value.

Table 177. IBRD

Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15:0 IBRD The integer baud rate divisor. RW 0x0000

FBRD Register

Description

The UART_FBRD Register is the fractional part of the baud rate divisor value.

The baud rate divisor is calculated as follows:

Baud rate divisor BAUDDIV = (FUARTCLK/(16 * Baud rate))

where FUARTCLK is the UART reference clock frequency. The BAUDDIV is comprised of the integer value IBRD and

the fractional value FBRD.

NOTE: The contents of the IBRD and FBRD registers are not updated until transmission or reception of the current

character is complete.

BCM2711 ARM Peripherals

11.5. Register View 148



Table 178. FBRD

Register
Bits Name Description Type Reset

31:6 Reserved. - - -

5:0 FBRD The fractional baud rate divisor. RW 0x00

LCRH Register

Description

The UART_LCRH Register is the line control register.

NOTE: The UART_LCRH, UART_IBRD, and UART_FBRD registers must not be changed:

when the UART is enabled

when completing a transmission or a reception when it has been programmed to become disabled.

Table 179. LCRH

Register
Bits Name Description Type Reset

31:8 Reserved. - - -

7 SPS Stick parity select.

0 = stick parity is disabled

1 = either:

if the EPS bit is 0 then the parity bit is transmitted and

checked as a 1

if the EPS bit is 1 then the parity bit is transmitted and

checked as a 0. See Table 180.

RO 0x0

6:5 WLEN Word length. These bits indicate the number of data bits

transmitted or received in a frame as follows:

b11 = 8 bits

b10 = 7 bits

b01 = 6 bits

b00 = 5 bits.

RW 0x0

4 FEN Enable FIFOs:

0 = FIFOs are disabled (character mode) that is, the FIFOs

become 1-byte-deep holding registers

1 = transmit and receive FIFO buffers are enabled (FIFO

mode).

RW 0x0

3 STP2 Two stop bits select. If this bit is set to 1, two stop bits are

transmitted at the end of the frame. The receive logic does

not check for two stop bits being received.

RW 0x0

2 EPS Even parity select. Controls the type of parity the UART

uses during transmission and reception:

0 = odd parity. The UART generates or checks for an odd

number of 1s in the data and parity bits.

1 = even parity. The UART generates or checks for an even

number of 1s in the data and parity bits.

This bit has no effect when the PEN bit disables parity

checking and generation. See Table 180.

RW 0x0

1 PEN Parity enable:

0 = parity is disabled and no parity bit added to the data

frame

1 = parity checking and generation is enabled. See Table

180.

RW 0x0

BCM2711 ARM Peripherals

11.5. Register View 149



Bits Name Description Type Reset

0 BRK Send break. If this bit is set to 1, a low-level is continually

output on the TXD output, after completing transmission of

the current character.

RW 0x0

Table 180. UART

parity bits
PEN EPS SPS Parity bit (transmitted or checked)

0 x x Not transmitted or checked

1 1 0 Even parity

1 0 0 Odd parity

1 0 1 1

1 1 1 0

CR Register

Description

The UART_CR Register is the control register.

NOTE: To enable transmission, the TXE bit and UARTEN bit must be set to 1. Similarly, to enable reception, the RXE

bit and UARTEN bit, must be set to 1.

NOTE: Program the control registers as follows:

1. Disable the UART.

2. Wait for the end of transmission or reception of the current character.

3. Flush the transmit FIFO by setting the FEN bit to 0 in the Line Control Register, UART_LCRH.

4. Reprogram the Control Register, UART_CR.

5. Enable the UART.

Table 181. CR Register
Bits Name Description Type Reset

31:16 Reserved. - - -

15 CTSEN CTS hardware flow control enable. If this bit is set to 1, CTS

hardware flow control is enabled. Data is only transmitted

when the nUARTCTS signal is asserted.

RW 0x0

14 RTSEN RTS hardware flow control enable. If this bit is set to 1, RTS

hardware flow control is enabled. Data is only requested

when there is space in the receive FIFO for it to be received.

RW 0x0

13 OUT2 Unsupported, write zero, read as don’t care RO 0x0

12 OUT1 Unsupported, write zero, read as don’t care RO 0x0

11 RTS Request to send. This bit is the complement of the UART

request to send, nUARTRTS, modem status output. That is,

when the bit is programmed to a 1 then nUARTRTS is LOW.

RW 0x0

10 DTR Unsupported, write zero, read as don’t care RO 0x0

9 RXE Receive enable. If this bit is set to 1, the receive section of

the UART is enabled. Data reception occurs for UART

signals. When the UART is disabled in the middle of

reception, it completes the current character before

stopping.

RW 0x1

BCM2711 ARM Peripherals

11.5. Register View 150



Bits Name Description Type Reset

8 TXE Transmit enable. If this bit is set to 1, the transmit section

of the UART is enabled. Data transmission occurs for UART

signals. When the UART is disabled in the middle of

transmission, it completes the current character before

stopping.

RW 0x1

7 LBE Loopback enable. If this bit is set to 1, the UARTTXD path is

fed through to the UARTRXD path. In UART mode, when

this bit is set, the modem outputs are also fed through to

the modem inputs. This bit is cleared to 0 on reset, to

disable loopback.

RW 0x0

6:3 Reserved. - - -

2 SIRLP Unsupported, write zero, read as don’t care RO 0x0

1 SIREN Unsupported, write zero, read as don’t care RO 0x0

0 UARTEN UART enable:

0 = UART is disabled. If the UART is disabled in the middle

of transmission or reception, it completes the current

character before stopping.

1 = the UART is enabled.

RW 0x0

IFLS Register

Description

The UART_IFLS Register is the interrupt FIFO level select register. You can use this register to define the FIFO level

that triggers the assertion of the combined interrupt signal.

The interrupts are generated based on a transition through a level rather than being based on the level. That is, the

interrupts are generated when the fill level progresses through the trigger level.

The bits are reset so that the trigger level is when the FIFOs are at the half-way mark.

Table 182. IFLS

Register
Bits Name Description Type Reset

31:12 Reserved. - - -

11:9 RXIFPSEL Unsupported, write zero, read as don’t care RO 0x0

8:6 TXIFPSEL Unsupported, write zero, read as don’t care RO 0x0

5:3 RXIFLSEL Receive interrupt FIFO level select. The trigger points for

the receive interrupt are as follows:

b000 = Receive FIFO becomes 1/8 full

b001 = Receive FIFO becomes 1/4 full

b010 = Receive FIFO becomes 1/2 full

b011 = Receive FIFO becomes 3/4 full

b100 = Receive FIFO becomes 7/8 full

b101-b111 = reserved.

RW 0x2

2:0 TXIFLSEL Transmit interrupt FIFO level select. The trigger points for

the transmit interrupt are as follows:

b000 = Transmit FIFO becomes 1/8 full

b001 = Transmit FIFO becomes 1/4 full

b010 = Transmit FIFO becomes 1/2 full

b011 = Transmit FIFO becomes 3/4 full

b100 = Transmit FIFO becomes 7/8 full

b101-b111 = reserved.

RW 0x2

BCM2711 ARM Peripherals

11.5. Register View 151



IMSC Register

Description

The UART_IMSC Register is the interrupt mask set/clear register. It is a read/write register. On a read this register

returns the current value of the mask on the relevant interrupt. On a write of 1 to the particular bit, it sets the

corresponding mask of that interrupt. A write of 0 clears the corresponding mask.

Table 183. IMSC

Register
Bits Name Description Type Reset

31:11 Reserved. - - -

10 OEIM Overrun error interrupt mask. A read returns the current

mask for the interrupt. On a write of 1, the mask of the

UARTOEINTR interrupt is set. A write of 0 clears the mask.

RW 0x0

9 BEIM Break error interrupt mask. A read returns the current mask

for the UARTBEINTR interrupt. On a write of 1, the mask of

the interrupt is set. A write of 0 clears the mask.

RW 0x0

8 PEIM Parity error interrupt mask. A read returns the current mask

for the UARTPEINTR interrupt. On a write of 1, the mask of

the interrupt is set. A write of 0 clears the mask.

RW 0x0

7 FEIM Framing error interrupt mask. A read returns the current

mask for the UARTFEINTR interrupt. On a write of 1, the

mask of the interrupt is set. A write of 0 clears the mask.

RW 0x0

6 RTIM Receive timeout interrupt mask. A read returns the current

mask for the UARTRTINTR interrupt. On a write of 1, the

mask of the interrupt is set. A write of 0 clears the mask.

RW 0x0

5 TXIM Transmit interrupt mask. A read returns the current mask

for the UARTTXINTR interrupt. On a write of 1, the mask of

the interrupt is set. A write of 0 clears the mask.

RW 0x0

4 RXIM Receive interrupt mask. A read returns the current mask for

the UARTRXINTR interrupt. On a write of 1, the mask of the

interrupt is set. A write of 0 clears the mask.

RW 0x0

3 DSRMIM Unsupported, write zero, read as don’t care RO 0x0

2 DCDMIM Unsupported, write zero, read as don’t care RO 0x0

1 CTSMIM nUARTCTS modem interrupt mask. A read returns the

current mask for the UARTCTSINTR interrupt. On a write of

1, the mask of the interrupt is set. A write of 0 clears the

mask.

RW 0x0

0 RIMIM Unsupported, write zero, read as don’t care RO 0x0

RIS Register

Description

The UART_RIS Register is the raw interrupt status register. It is a read-only register. This register returns the current

raw status value, prior to masking, of the corresponding interrupt.

NOTE: All the bits, except for the modem status interrupt bits (bits 3 to 0), are cleared to 0 when reset. The modem

status interrupt bits are undefined after reset.

Table 184. RIS

Register
Bits Name Description Type Reset

31:11 Reserved. - - -

BCM2711 ARM Peripherals

11.5. Register View 152



Bits Name Description Type Reset

10 OERIS Overrun error interrupt status. Returns the raw interrupt

state of the UARTOEINTR interrupt.

RO 0x0

9 BERIS Break error interrupt status. Returns the raw interrupt state

of the UARTBEINTR interrupt.

RO 0x0

8 PERIS Parity error interrupt status. Returns the raw interrupt state

of the UARTPEINTR interrupt.

RO 0x0

7 FERIS Framing error interrupt status. Returns the raw interrupt

state of the UARTFEINTR interrupt.

RO 0x0

6 RTRIS Receive timeout interrupt status. Returns the raw interrupt

state of the UARTRTINTR interrupt.

RO 0x0

5 TXRIS Transmit interrupt status. Returns the raw interrupt state of

the UARTTXINTR interrupt.

RO 0x0

4 RXRIS Receive interrupt status. Returns the raw interrupt state of

the UARTRXINTR interrupt.

RO 0x0

3 DSRRMIS Unsupported, write zero, read as don’t care RO 0x0

2 DCDRMIS Unsupported, write zero, read as don’t care RO 0x0

1 CTSRMIS nUARTCTS modem interrupt status. Returns the raw

interrupt state of the UARTCTSINTR interrupt.

RO 0x0

0 RIRMIS Unsupported, write zero, read as don’t care RO 0x0

MIS Register

Description

The UART_MIS Register is the masked interrupt status register. This register returns the current masked status value

of the corresponding interrupt.

NOTE: All the bits, except for the modem status interrupt bits (bits 3 to 0), are cleared to 0 when reset. The modem

status interrupt bits are undefined after reset.

Table 185. MIS

Register
Bits Name Description Type Reset

31:11 Reserved. - - -

10 OEMIS Overrun error masked interrupt status. Returns the masked

interrupt state of the UARTOEINTR interrupt.

RO 0x0

9 BEMIS Break error masked interrupt status. Returns the masked

interrupt state of the UARTBEINTR interrupt.

RO 0x0

8 PEMIS Parity error masked interrupt status. Returns the masked

interrupt state of the UARTPEINTR interrupt.

RO 0x0

7 FEMIS Framing error masked interrupt status. Returns the masked

interrupt state of the UARTFEINTR interrupt.

RO 0x0

6 RTMIS Receive timeout masked interrupt status. Returns the

masked interrupt state of the UARTRTINTR interrupt.

RO 0x0

5 TXMIS Transmit masked interrupt status. Returns the masked

interrupt state of the UARTTXINTR interrupt.

RO 0x0

4 RXMIS Receive masked interrupt status. Returns the masked

interrupt state of the UARTRXINTR interrupt.

RO 0x0

BCM2711 ARM Peripherals

11.5. Register View 153



Bits Name Description Type Reset

3 DSRMMIS Unsupported, write zero, read as don’t care RO 0x0

2 DCDMMIS Unsupported, write zero, read as don’t care RO 0x0

1 CTSMMIS nUARTCTS modem masked interrupt status. Returns the

masked interrupt state of the UARTCTSINTR interrupt.

RO 0x0

0 RIMMIS Unsupported, write zero, read as don’t care RO 0x0

ICR Register

Description

The UART_ICR Register is the interrupt clear register.

Table 186. ICR

Register
Bits Name Description Type Reset

31:11 Reserved. - - -

10 OEIC Overrun error interrupt clear. Clears the UARTOEINTR

interrupt.

WO 0x0

9 BEIC Break error interrupt clear. Clears the UARTBEINTR

interrupt.

WO 0x0

8 PEIC Parity error interrupt clear. Clears the UARTPEINTR

interrupt.

WO 0x0

7 FEIC Framing error interrupt clear. Clears the UARTFEINTR

interrupt.

WO 0x0

6 RTIC Receive timeout interrupt clear. Clears the UARTRTINTR

interrupt.

WO 0x0

5 TXIC Transmit interrupt clear. Clears the UARTTXINTR interrupt. WO 0x0

4 RXIC Receive interrupt clear. Clears the UARTRXINTR interrupt. WO 0x0

3 DSRMIC Unsupported, write zero, read as don’t care WO 0x0

2 DCDMIC Unsupported, write zero, read as don’t care WO 0x0

1 CTSMIC nUARTCTS modem interrupt clear. Clears the

UARTCTSINTR interrupt.

WO 0x0

0 RIMIC Unsupported, write zero, read as don’t care WO 0x0

DMACR Register

Description

The UART_DMACR Register is the DMA control register.

Table 187. DMACR

Register
Bits Name Description Type Reset

31:3 Reserved. - - -

2 DMAONERR DMA on error. If this bit is set to 1, the DMA receive request

outputs are disabled when the UART error interrupt is

asserted.

RW 0x0

1 TXDMAE Transmit DMA enable. If this bit is set to 1, DMA for the

transmit FIFO is enabled.

RW 0x0

BCM2711 ARM Peripherals

11.5. Register View 154



Bits Name Description Type Reset

0 RXDMAE Receive DMA enable. If this bit is set to 1, DMA for the

receive FIFO is enabled.

RW 0x0

ITCR Register

Description

This is the Test Control Register UART_ITCR.

Table 188. ITCR

Register
Bits Name Description Type Reset

31:2 Reserved. - - -

1 ITCR1 Test FIFO enable. When this bit it 1, a write to the Test Data

Register, UART_TDR writes data into the receive FIFO, and

reading from the UART_TDR register reads data out of the

transmit FIFO.

When this bit is 0, data cannot be read directly from the

transmit FIFO or written directly to the receive FIFO (normal

operation).

RW 0x0

0 ITCR0 Integration test enable. When this bit is 1, the UART is

placed in integration test mode, otherwise it is in normal

operation.

RW 0x0

ITIP Register

Description

This is the Test Control Register UART_ITIP.

Table 189. ITIP

Register
Bits Name Description Type Reset

31:4 Reserved. - - -

3 ITIP3 Reads return the value of the nUARTCTS primary input. RW 0x0

2:1 Reserved. - - -

0 ITIP0 Reads return the value of the UARTRXD primary input. RW 0x0

ITOP Register

Description

This is the Test Control Register UART_ITOP.

Table 190. ITOP

Register
Bits Name Description Type Reset

31:12 Reserved. - - -

11 ITOP11 Intra-chip output. Writes specify the value to be driven on

UARTMSINTR.

Reads return the value of UARTMSINTR at the output of

the test multiplexor.

RW 0x0

10 ITOP10 Intra-chip output. Writes specify the value to be driven on

UARTRXINTR.

Reads return the value of UARTRXINTR at the output of the

test multiplexor.

RW 0x0

BCM2711 ARM Peripherals

11.5. Register View 155



Bits Name Description Type Reset

9 ITOP9 Intra-chip output. Writes specify the value to be driven on

UARTTXINTR.

Reads return the value of UARTTXINTR at the output of the

test multiplexor.

RW 0x0

8 ITOP8 Intra-chip output. Writes specify the value to be driven on

UARTRTINTR.

Reads return the value of UARTRTINTR at the output of the

test multiplexor.

RW 0x0

7 ITOP7 Intra-chip output. Writes specify the value to be driven on

UARTEINTR.

Reads return the value of UARTEINTR at the output of the

test multiplexor.

RW 0x0

6 ITOP6 Intra-chip output. Writes specify the value to be driven on

UARTINTR.

Reads return the value of UARTINTR at the output of the

test multiplexor.

RW 0x0

5:4 Reserved. - - -

3 ITOP3 Primary output. Writes specify the value to be driven on

nUARTRTS.

RW 0x0

2:1 Reserved. - - -

0 ITOP0 Primary output. Writes specify the value to be driven on

UARTTXD.

RW 0x0

TDR Register

Description

UART_TDR is the test data register. It enables data to be written into the receive FIFO and read out from the transmit

FIFO for test purposes. This test function is enabled by the ITCR1 bit in the Test Control Register, UART_ITCR.

Table 191. TDR

Register
Bits Name Description Type Reset

31:11 Reserved. - - -

10:0 TDR10_0 When the ITCR1 bit is set to 1, data is written into the

receive FIFO and read out of the transmit FIFO.

RW 0x000

BCM2711 ARM Peripherals

11.5. Register View 156



Chapter 12. Timer (ARM side)

12.1. Overview

The ARM Timer is based on a ARM SP804, but it has a number of differences with the standard SP804:

• There is only one timer

• It only runs in continuous mode

• It has a extra clock pre-divider register

• It has a extra stop-in-debug-mode control bit

• It also has a 32-bit free running counter

The clock from the ARM timer is derived from the system clock. This clock can change dynamically e.g. if the system

goes into reduced power or in low power mode. Thus the clock speed adapts to the overall system performance

capabilities. For accurate timing it is recommended to use the system timers.

12.2. Timer Registers

The base address for the ARM timer register is 0x7e00b000.

Table 192. Timer

Registers
Offset Name Description

0x400 LOAD Load

0x404 VALUE Value (Read-Only)

0x408 CONTROL Control

0x40c IRQCNTL IRQ Clear/Ack (Write-Only)

0x410 RAWIRQ RAW IRQ (Read-Only)

0x414 MSKIRQ Masked IRQ (Read-Only)

0x418 RELOAD Reload

0x41c PREDIV Pre-divider (Not in real 804!)

0x420 FREECNT Free running counter (Not in real 804!)

LOAD Register

Description

The timer load register sets the time for the timer to count down. This value is loaded into the timer value register

after the load register has been written or if the timer-value register has counted down to 0.

Table 193. Timer Load

register
Bits Name Description Type Reset

31:0 LOAD Timer load value. RW 0x00000000

VALUE Register

Description

This register holds the current timer value and is counted down when the counter is running. It is counted down each

timer clock until the value 0 is reached. Then the value register is re-loaded from the timer load register and the

BCM2711 ARM Peripherals

12.1. Overview 157



interrupt pending bit is set. The timer count down speed is set by the timer pre-divide register.

Table 194. Timer

Value register
Bits Name Description Type Reset

31:0 VALUE Current timer value. RO 0x00000000

CONTROL Register

Description

The standard SP804 timer control register consists of 8 bits but in the BCM2711 implementation there are more

control bits for the extra features. Control bits 0-7 are identical to the SP804 bits, albeit some functionality of the

SP804 is not implemented. All new control bits start from bit 8 upwards.

Differences between a real 804 and the BCM2711 implementation are shown in italics.

Table 195. Timer

control register
Bits Name Description Type Reset

31:24 Reserved. - - -

23:16 FREEDIV Free running counter pre-scaler. Freq is sys_clk/(prescale+1)

These bits do not exist in a standard 804 timer!

RW 0x3e

15:10 Reserved. - - -

9 ENAFREE 0 : Free running counter Disabled

1 : Free running counter Enabled

This bit does not exist in a standard 804 timer!

RW 0x0

8 DBGHALT 0 : Timers keeps running if ARM is in debug halted mode

1 : Timers halted if ARM is in debug halted mode

This bit does not exist in a standard 804 timer!

RW 0x0

7 ENABLE 0 : Timer disabled

1 : Timer enabled

RW 0x0

6 Reserved. - - -

5 IE 0 : Timer interrupt disabled

1 : Timer interrupt enabled

RW 0x1

4 Reserved. - - -

3:2 DIV Pre-scale bits:

00 : pre-scale is clock / 1 (No pre-scale)

01 : pre-scale is clock / 16

10 : pre-scale is clock / 256

11 : pre-scale is clock / 1 (Undefined in 804)

RW 0x0

1 32BIT 0 : 16-bit counters

1 : 32-bit counter

RW 0x0

0 Reserved. - - -

IRQCNTL Register

Description

The timer IRQ clear register is write-only. When writing this register the interrupt-pending bit is cleared.

When reading this register it returns 0x544D5241 which is the ASCII reversed value for "ARMT".

BCM2711 ARM Peripherals

12.2. Timer Registers 158



Table 196. Timer IRQ

clear register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 INT Write a 1 to clear the interrupt WO 0x0

RAWIRQ Register

Description

The raw IRQ register is a read-only register. It shows the status of the interrupt pending bit.

Table 197. Timer Raw

IRQ register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 INT 0 : The interrupt pending bit is clear

1 : The interrupt pending bit is set.

RO 0x0

The interrupt pending bit is set each time the value register is counted down to zero. The interrupt pending bit can not by

itself generate interrupts. Interrupts can only be generated if the interrupt enable bit is set.

MSKIRQ Register

Description

The masked IRQ register is a read-only register. It shows the status of the interrupt signal. It is simply a logical AND of

the interrupt pending bit and the interrupt enable bit.

Table 198. Timer

Masked IRQ register
Bits Name Description Type Reset

31:1 Reserved. - - -

0 INT 0 : Interrupt line not asserted.

1 :Interrupt line is asserted, (the interrupt pending and the

interrupt enable bit are set.)

RO 0x0

RELOAD Register

Description

This register is a copy of the timer load register. The difference is that a write to this register does not trigger an

immediate reload of the timer value register. Instead the timer load register value is only accessed if the value register

has finished counting down to zero.

Table 199. Timer

Reload register
Bits Name Description Type Reset

31:0 LOAD Timer load value. RW 0x00000000

PREDIV Register

Table 200. Timer pre-

divider register
Bits Name Description Type Reset

31:10 Reserved. - - -

9:0 PREDIV Pre-divider value. RW 0x07d

The Pre-divider register is not present in the SP804.

The pre-divider register is 10 bits wide and can be written or read from. This register has been added as the SP804

expects a 1MHz clock which we do not have. Instead the pre-divider takes the APB clock and divides it down according to:

BCM2711 ARM Peripherals

12.2. Timer Registers 159



The reset value of this register is 0x7D so gives a divide by 126.

FREECNT Register

Table 201. Free

running counter
Bits Name Description Type Reset

31:0 FREECNT Counter value RO 0x00000000

The free running counter is not present in the SP804.

The free running counter is a 32-bit wide read-only register. The register is enabled by setting bit 9 of the Timer control

register. The free running counter is incremented immediately after it is enabled. The timer can not be reset but when

enabled, will always increment and roll-over. The free running counter is also running from the APB clock and has its own

clock pre-divider controlled by bits 16-23 of the timer control register.

This register will be halted too if bit 8 of the control register is set and the ARM is in Debug Halt mode.

BCM2711 ARM Peripherals

12.2. Timer Registers 160



Chapter 13. ARM Mailboxes

13.1. Overview

There are 16 ARM Mailboxes which can be used to send messages or signals between the ARM cores. Each mailbox is a

32-bit wide value with separate write-set and write-clear registers (see Section 6.5 for more information about write-set /

write-clear registers), for a total of 32 registers.

 NOTE

The ARM Mailboxes described here (in the ARM_LOCAL block) are distinct from the VPU Mailboxes (in the ARMC

block).

There are no differences between any of the ARM mailboxes, so it is left to the programmer to decide how to use them.

Mailbox bits can be set by writing to the appropriate MBOX_SET register. Each mailbox generates an interrupt whenever

any of its bits are non-zero - refer to Chapter 6 for details on how these interrupts are routed. The mailbox’s value can be

read from the appropriate MBOX_CLR register, and mailbox bits can be cleared by writing to the appropriate MBOX_CLR

register (these last two steps would typically be performed inside the relevant ARM core’s interrupt handler).

13.2. Registers

The ARM_LOCAL register base address is 0x4c0000000. Note that, unlike other peripheral addresses in this document, this

is an ARM-only address and not a legacy master address. If Low Peripheral mode is enabled this base address becomes

0xff800000.

The write-set registers (MBOX_SET) are write-only, but the write-clear registers (MBOX_CLR) are read-write.

Table 202. ARM

Mailbox registers
Offset Name Description

0x80 MBOX_SET00 Mailbox 00 Set Bit Register

0x84 MBOX_SET01 Mailbox 01 Set Bit Register

0x88 MBOX_SET02 Mailbox 02 Set Bit Register

0x8c MBOX_SET03 Mailbox 03 Set Bit Register

0x90 MBOX_SET04 Mailbox 04 Set Bit Register

0x94 MBOX_SET05 Mailbox 05 Set Bit Register

0x98 MBOX_SET06 Mailbox 06 Set Bit Register

0x9c MBOX_SET07 Mailbox 07 Set Bit Register

0xa0 MBOX_SET08 Mailbox 08 Set Bit Register

0xa4 MBOX_SET09 Mailbox 09 Set Bit Register

0xa8 MBOX_SET10 Mailbox 10 Set Bit Register

0xac MBOX_SET11 Mailbox 11 Set Bit Register

0xb0 MBOX_SET12 Mailbox 12 Set Bit Register

0xb4 MBOX_SET13 Mailbox 13 Set Bit Register

0xb8 MBOX_SET14 Mailbox 14 Set Bit Register

BCM2711 ARM Peripherals

13.1. Overview 161



Offset Name Description

0xbc MBOX_SET15 Mailbox 15 Set Bit Register

0xc0 MBOX_CLR00 Mailbox 00 Clear Bit Register

0xc4 MBOX_CLR01 Mailbox 01 Clear Bit Register

0xc8 MBOX_CLR02 Mailbox 02 Clear Bit Register

0xcc MBOX_CLR03 Mailbox 03 Clear Bit Register

0xd0 MBOX_CLR04 Mailbox 04 Clear Bit Register

0xd4 MBOX_CLR05 Mailbox 05 Clear Bit Register

0xd8 MBOX_CLR06 Mailbox 06 Clear Bit Register

0xdc MBOX_CLR07 Mailbox 07 Clear Bit Register

0xe0 MBOX_CLR08 Mailbox 08 Clear Bit Register

0xe4 MBOX_CLR09 Mailbox 09 Clear Bit Register

0xe8 MBOX_CLR10 Mailbox 10 Clear Bit Register

0xec MBOX_CLR11 Mailbox 11 Clear Bit Register

0xf0 MBOX_CLR12 Mailbox 12 Clear Bit Register

0xf4 MBOX_CLR13 Mailbox 13 Clear Bit Register

0xf8 MBOX_CLR14 Mailbox 14 Clear Bit Register

0xfc MBOX_CLR15 Mailbox 15 Clear Bit Register

MBOX_SET00, MBOX_SET01, …, MBOX_SET14, MBOX_SET15 Registers

Description

Writing a '1' to a bit position in this register causes the corresponding bit in the mailbox word to be set to 1.

There are 16 mailboxes in total, four per ARM core. Mailboxes 4C to 4C+3 'belong' to core number C.

Each mailbox may raise an interrupt to its core when any bits in the 32-bit word are set to '1'.

Table 203.

MBOX_SET00,

MBOX_SET01, …,

MBOX_SET14,

MBOX_SET15

Registers

Bits Name Description Type Reset

31:00 MBOX_DATA 32-bit mailbox word WO 0x00000000

MBOX_CLR00, MBOX_CLR01, …, MBOX_CLR14, MBOX_CLR15 Registers

Description

Writing a '1' to a bit position in this register causes the corresponding bit in the mailbox word to be cleared to 0. A

read returns the current state of the mailbox word.

There are 16 mailboxes in total, four per ARM core. Mailboxes 4C to 4C+3 'belong' to core number C.

Each mailbox may raise an interrupt to its core when any bits in the 32-bit word are set to '1'.

Table 204.

MBOX_CLR00,

MBOX_CLR01, …,

MBOX_CLR14,

MBOX_CLR15

Registers

Bits Name Description Type Reset

31:00 MBOX_DATA 32-bit mailbox word W1C 0x00000000

BCM2711 ARM Peripherals

13.2. Registers 162




	BCM2711 ARM Peripherals
	Colophon
	Legal Disclaimer Notice
	Table of Contents

	Chapter 1. Introduction
	1.1. Overview
	1.2. Address map
	1.2.1. Diagrammatic overview
	1.2.2. Full 35-bit address map
	1.2.3. ARM physical addresses
	1.2.4. Legacy master addresses

	1.3. Peripheral access precautions for correct memory ordering

	Chapter 2. Auxiliaries: UART1, SPI1 & SPI2
	2.1. Overview
	2.1.1. AUX registers

	2.2. Mini UART
	2.2.1. Mini UART implementation details
	2.2.2. Mini UART register details

	2.3. Universal SPI Master (2x)
	2.3.1. SPI implementation details
	2.3.2. Interrupts
	2.3.3. Long bit streams
	2.3.4. SPI register details


	Chapter 3. BSC
	3.1. Overview
	3.2. Register View
	3.3. 10-Bit Addressing
	3.3.1. Writing
	3.3.2. Reading


	Chapter 4. DMA Controller
	4.1. Overview
	4.2. DMA Controller Registers
	4.2.1. DMA Channel Register Address Map
	4.2.1.1. Control Block Data Structure
	4.2.1.2. Register Map
	4.2.1.3. Peripheral DREQ Signals


	4.3. AXI Bursts
	4.4. Error Handling
	4.5. DMA LITE Engines
	4.6. DMA4 Engines

	Chapter 5. General Purpose I/O (GPIO)
	5.1. Overview
	5.2. Register View
	5.3. Alternative Function Assignments
	5.4. General Purpose GPIO Clocks
	5.4.1. Operating Frequency
	5.4.2. Register Definitions


	Chapter 6. Interrupts
	6.1. Overview
	6.2. Interrupt sources
	6.2.1. ARM Core n interrupts
	6.2.2. ARM_LOCAL interrupts
	6.2.3. ARMC interrupts
	6.2.4. VideoCore interrupts
	6.2.5. ETH_PCIe interrupts

	6.3. GIC-400 interrupt controller
	6.4. Legacy interrupt controller
	6.5. Registers
	6.5.1. GIC-400
	6.5.2. ARM_LOCAL
	6.5.3. ARMC


	Chapter 7. PCM / I2S Audio
	7.1. Overview
	7.2. Block Diagram
	7.3. Typical Timing
	7.4. Operation
	7.5. Software Operation
	7.5.1. Operating in Polled mode
	7.5.2. Operating in Interrupt mode
	7.5.3. DMA

	7.6. Error Handling
	7.7. PDM Input Mode Operation
	7.8. GRAY Code Input Mode Operation
	7.9. PCM Register Map

	Chapter 8. Pulse Width Modulator
	8.1. Overview
	8.2. Block Diagram
	8.3. PWM Implementation
	8.4. Modes of Operation
	8.5. Quick Reference
	8.6. Control and Status Registers

	Chapter 9. SPI
	9.1. Overview
	9.2. SPI Master Mode
	9.2.1. Standard mode
	9.2.2. Bidirectional mode

	9.3. LoSSI mode
	9.3.1. Command write
	9.3.2. Parameter write
	9.3.3. Byte read commands
	9.3.4. 24-bit read command
	9.3.5. 32-bit read command

	9.4. Block Diagram
	9.5. SPI Register Map
	9.6. Software Operation
	9.6.1. Polled
	9.6.2. Interrupt
	9.6.3. DMA
	9.6.4. Notes


	Chapter 10. System Timer
	10.1. Overview
	10.2. System Timer Registers

	Chapter 11. UART
	11.1. Overview
	11.2. Variations from the 16C650 UART
	11.3. Primary UART Inputs and Outputs
	11.4. UART Interrupts
	11.5. Register View

	Chapter 12. Timer (ARM side)
	12.1. Overview
	12.2. Timer Registers

	Chapter 13. ARM Mailboxes
	13.1. Overview
	13.2. Registers


