topola/src/router/thetastar.rs

470 lines
18 KiB
Rust

// SPDX-FileCopyrightText: 2024 Topola contributors
//
// SPDX-License-Identifier: MIT
//
// This file was originally copied from astar.rs of library Petgraph at
// https://github.com/petgraph/petgraph/blob/master/src/algo/astar.rs
//
// Petgraph's original copyright line is
// Copyright (c) 2015
use std::collections::btree_map::Entry;
use std::collections::{BTreeMap, BinaryHeap};
use std::ops::{ControlFlow, Sub};
use derive_getters::Getters;
use petgraph::algo::Measure;
use petgraph::visit::{EdgeRef, GraphBase, IntoEdgeReferences, IntoEdges};
use thiserror::Error;
use std::cmp::Ordering;
use crate::stepper::{EstimateProgress, Step};
#[derive(Copy, Clone, Debug)]
pub struct MinScored<K, T>(pub K, pub T);
impl<K: PartialOrd, T> PartialEq for MinScored<K, T> {
#[inline]
fn eq(&self, other: &MinScored<K, T>) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl<K: PartialOrd, T> Eq for MinScored<K, T> {}
impl<K: PartialOrd, T> PartialOrd for MinScored<K, T> {
#[inline]
fn partial_cmp(&self, other: &MinScored<K, T>) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<K: PartialOrd, T> Ord for MinScored<K, T> {
#[inline]
fn cmp(&self, other: &MinScored<K, T>) -> Ordering {
let a = &self.0;
let b = &other.0;
if a == b {
Ordering::Equal
} else if a < b {
Ordering::Greater
} else if a > b {
Ordering::Less
} else if a.ne(a) && b.ne(b) {
// these are the NaN cases
Ordering::Equal
} else if a.ne(a) {
// Order NaN less, so that it is last in the MinScore order
Ordering::Less
} else {
Ordering::Greater
}
}
}
#[derive(Debug)]
pub struct PathTracker<G>
where
G: GraphBase,
G::NodeId: Eq + Ord,
{
predecessors: BTreeMap<G::NodeId, G::NodeId>,
}
impl<G> PathTracker<G>
where
G: GraphBase,
G::NodeId: Eq + Ord,
{
fn new() -> PathTracker<G> {
PathTracker {
predecessors: BTreeMap::new(),
}
}
fn predecessor(&self, node: G::NodeId) -> Option<G::NodeId> {
self.predecessors.get(&node).copied()
}
fn set_predecessor(&mut self, node: G::NodeId, previous: G::NodeId) {
self.predecessors.insert(node, previous);
}
pub fn reconstruct_path_to(&self, last: G::NodeId) -> Vec<G::NodeId> {
let mut path = vec![last];
let mut current = last;
while let Some(&previous) = self.predecessors.get(&current) {
path.push(previous);
current = previous;
}
path.reverse();
path
}
}
pub trait ThetastarStrategy<G, K, R>
where
G: GraphBase,
G::NodeId: Eq + Ord,
for<'a> &'a G: IntoEdges<NodeId = G::NodeId, EdgeId = G::EdgeId> + MakeEdgeRef,
K: Measure + Copy,
{
fn visit_navnode(
&mut self,
graph: &G,
navnode: G::NodeId,
tracker: &PathTracker<G>,
) -> Result<Option<R>, ()>;
fn place_probe_to_navnode(
&mut self,
graph: &G,
initial_parent_navnode: Option<G::NodeId>,
probed_navnode: G::NodeId,
) -> ControlFlow<Option<K>>;
fn remove_probe(&mut self, graph: &G);
fn estimate_cost_to_goal(&mut self, graph: &G, navnode: G::NodeId) -> K;
}
pub trait MakeEdgeRef: IntoEdgeReferences {
fn edge_ref(&self, edge_id: Self::EdgeId) -> Self::EdgeRef;
}
/// The enum that describes the current state of the algorithm.
#[derive(Clone, Copy, Debug)]
pub enum ThetastarState<N: Copy, E: Copy> {
/// Visit a new navnode and copy all navedges going out of it.
Scanning,
/// Load a new navedge.
VisitFrontierNavedge(N),
/// Backtrack by one navnode, then line-of-sight probe to target of the
/// currently visited navedge. Transition to this state again until a
/// condition is met, then continue the algorithm by transitioning to the
/// `ProbeOnNavedge(...)` state.
BacktrackAndProbeOnLineOfSight(N, E),
ProbeOnNavedge(N, E),
/// The probe is in place, retract it and continue to the next navedge.
Probing(N),
}
/// The pathfinding algorithm Topola uses to find the shortest path to route
/// is Theta* with conditional repeated backtracking. Theta* is just A* with an
/// improvement: every time an navedge is scanned, the algorithm first tries to
/// draw directly to its target navnode from the predecessor of the currently
/// visited navnode. Note that this creates paths with edges that do not all lie
/// on the navmesh.
///
/// Conditional repeated backtracking is our improvement to Theta*: if
/// line-of-sight routing fails if a condition is met, continue trying to draw
/// from parent of the parent navnode, and so on. This is different from Theta*
/// because in Theta* there is only one backtracking step -- only one attempt to
/// do line-of-sight routing.
#[derive(Getters)]
pub struct ThetastarStepper<G, K>
where
G: GraphBase,
G::NodeId: Eq + Ord,
for<'a> &'a G: IntoEdges<NodeId = G::NodeId, EdgeId = G::EdgeId> + MakeEdgeRef,
K: Measure + Copy + Sub<Output = K>,
{
state: ThetastarState<G::NodeId, G::EdgeId>,
graph: G,
/// The priority queue of the navnodes to expand.
#[getter(skip)]
frontier: BinaryHeap<MinScored<K, G::NodeId>>,
/// Also known as the g-scores, or just g.
scores: BTreeMap<G::NodeId, K>,
/// Also known as the f-scores, or just f.
cost_to_goal_estimate_scores: BTreeMap<G::NodeId, K>,
#[getter(skip)]
path_tracker: PathTracker<G>,
// FIXME: To work around edge references borrowing from the graph we collect then reiterate over them.
#[getter(skip)]
edge_ids: Vec<G::EdgeId>,
#[getter(skip)]
progress_estimate_value: K,
#[getter(skip)]
progress_estimate_maximum: K,
}
#[derive(Error, Debug, Clone)]
pub enum ThetastarError {
#[error("A* search found no path")]
NotFound,
}
impl<G, K> ThetastarStepper<G, K>
where
G: GraphBase,
G::NodeId: Eq + Ord,
for<'a> &'a G: IntoEdges<NodeId = G::NodeId, EdgeId = G::EdgeId> + MakeEdgeRef,
K: Measure + Copy + Sub<Output = K>,
{
pub fn new<R>(
graph: G,
start: G::NodeId,
strategy: &mut impl ThetastarStrategy<G, K, R>,
) -> Self {
let estimated_cost_from_start_to_goal = strategy.estimate_cost_to_goal(&graph, start);
let mut this = Self {
state: ThetastarState::Scanning,
graph,
frontier: BinaryHeap::new(),
scores: BTreeMap::new(),
cost_to_goal_estimate_scores: BTreeMap::new(),
path_tracker: PathTracker::<G>::new(),
edge_ids: Vec::new(),
progress_estimate_value: K::default(),
progress_estimate_maximum: estimated_cost_from_start_to_goal,
};
let zero_score = K::default();
this.scores.insert(start, zero_score);
this.frontier
.push(MinScored(estimated_cost_from_start_to_goal, start));
this
}
fn push_to_frontier<R>(
&mut self,
next: G::NodeId,
next_score: K,
predecessor: G::NodeId,
strategy: &mut impl ThetastarStrategy<G, K, R>,
) {
let cost_to_goal_estimate = strategy.estimate_cost_to_goal(&self.graph, next);
if cost_to_goal_estimate > self.progress_estimate_maximum {
self.progress_estimate_maximum = cost_to_goal_estimate;
}
if self.progress_estimate_maximum - cost_to_goal_estimate > self.progress_estimate_value {
self.progress_estimate_value = self.progress_estimate_maximum - cost_to_goal_estimate;
}
self.path_tracker.set_predecessor(next, predecessor);
let next_estimate_score = next_score + cost_to_goal_estimate;
self.frontier.push(MinScored(next_estimate_score, next));
}
}
impl<G, K, R, S: ThetastarStrategy<G, K, R>>
Step<S, (K, Vec<G::NodeId>, R), ThetastarState<G::NodeId, G::EdgeId>> for ThetastarStepper<G, K>
where
G: GraphBase,
G::NodeId: Eq + Ord,
for<'a> &'a G: IntoEdges<NodeId = G::NodeId, EdgeId = G::EdgeId> + MakeEdgeRef,
K: Measure + Copy + Sub<Output = K>,
{
type Error = ThetastarError;
fn step(
&mut self,
strategy: &mut S,
) -> Result<
ControlFlow<(K, Vec<G::NodeId>, R), ThetastarState<G::NodeId, G::EdgeId>>,
ThetastarError,
> {
match self.state {
ThetastarState::Scanning => {
let Some(MinScored(estimate_score, navnode)) = self.frontier.pop() else {
return Err(ThetastarError::NotFound);
};
let Ok(maybe_result) =
strategy.visit_navnode(&self.graph, navnode, &self.path_tracker)
else {
return Ok(ControlFlow::Continue(self.state));
};
if let Some(result) = maybe_result {
let path = self.path_tracker.reconstruct_path_to(navnode);
let cost = self.scores[&navnode];
return Ok(ControlFlow::Break((cost, path, result)));
}
match self.cost_to_goal_estimate_scores.entry(navnode) {
Entry::Occupied(mut entry) => {
// If the node has already been visited with an equal or lower
// estimated score than now, then we do not need to re-visit it.
if *entry.get() <= estimate_score {
return Ok(ControlFlow::Continue(self.state));
}
entry.insert(estimate_score);
}
Entry::Vacant(entry) => {
entry.insert(estimate_score);
}
}
self.edge_ids = self.graph.edges(navnode).map(|edge| edge.id()).collect();
self.state = ThetastarState::VisitFrontierNavedge(navnode);
Ok(ControlFlow::Continue(self.state))
}
ThetastarState::VisitFrontierNavedge(visited_navnode) => {
if let Some(visited_navedge) = self.edge_ids.pop() {
self.state = ThetastarState::BacktrackAndProbeOnLineOfSight(
visited_navnode,
visited_navedge,
);
Ok(ControlFlow::Continue(self.state))
} else {
self.state = ThetastarState::Scanning;
Ok(ControlFlow::Continue(self.state))
}
}
ThetastarState::BacktrackAndProbeOnLineOfSight(curr_navnode, visited_navedge) => {
// This lookup can be unwrapped without fear of panic since the node was
// necessarily scored before adding it to `.visit_next`.
//let node_score = self.scores[&visited_navnode];
let initial_source_navnode = (&self.graph).edge_ref(visited_navedge).source();
let initial_parent_navnode = self.path_tracker.predecessor(initial_source_navnode);
let probed_navnode = (&self.graph).edge_ref(visited_navedge).target();
if let Some(parent_navnode) = self.path_tracker.predecessor(curr_navnode) {
strategy.visit_navnode(&self.graph, parent_navnode, &self.path_tracker);
let parent_score = self.scores[&parent_navnode];
match strategy.place_probe_to_navnode(
&self.graph,
initial_parent_navnode,
probed_navnode,
) {
ControlFlow::Continue(()) => {
// Transition to self to repeatedly backtrack.
self.state = ThetastarState::BacktrackAndProbeOnLineOfSight(
parent_navnode,
visited_navedge,
);
Ok(ControlFlow::Continue(self.state))
}
ControlFlow::Break(Some(los_cost)) => {
let next = probed_navnode;
let next_score = parent_score + los_cost;
match self.scores.entry(next) {
Entry::Occupied(mut entry) => {
// No need to add neighbors that we have already reached through a
// shorter path than now.
if *entry.get() <= next_score {
// We just remove the probe instantly
// here instead of doing it in
// ThetastarState::Probing or a new
// state to avoid complicating.
strategy.remove_probe(&self.graph);
self.state = ThetastarState::ProbeOnNavedge(
initial_source_navnode,
visited_navedge,
);
return Ok(ControlFlow::Continue(self.state));
}
entry.insert(next_score);
}
Entry::Vacant(entry) => {
entry.insert(next_score);
}
}
self.push_to_frontier(next, next_score, parent_navnode, strategy);
self.state = ThetastarState::Probing(curr_navnode);
Ok(ControlFlow::Continue(self.state))
}
ControlFlow::Break(None) => {
// Come back to initial navnode if drawing failed
// and the backtracking condition is not met.
strategy.visit_navnode(
&self.graph,
initial_source_navnode,
&self.path_tracker,
);
self.state = ThetastarState::ProbeOnNavedge(
initial_source_navnode,
visited_navedge,
);
Ok(ControlFlow::Continue(self.state))
}
}
} else {
// Come back from current navnode if drawing from it failed.
strategy.visit_navnode(&self.graph, initial_source_navnode, &self.path_tracker);
self.state =
ThetastarState::ProbeOnNavedge(initial_source_navnode, visited_navedge);
Ok(ControlFlow::Continue(self.state))
}
}
ThetastarState::ProbeOnNavedge(visited_navnode, visited_navedge) => {
let visited_score = self.scores[&visited_navnode];
let initial_source_navnode = (&self.graph).edge_ref(visited_navedge).source();
let initial_parent_navnode = self.path_tracker.predecessor(initial_source_navnode);
let probed_navnode = (&self.graph).edge_ref(visited_navedge).target();
if let ControlFlow::Break(Some(navedge_cost)) = strategy.place_probe_to_navnode(
&self.graph,
initial_parent_navnode,
probed_navnode,
) {
let next = probed_navnode;
let next_score = visited_score + navedge_cost;
match self.scores.entry(next) {
Entry::Occupied(mut entry) => {
// No need to add neighbors that we have already reached through a
// shorter path than now.
if *entry.get() <= next_score {
self.state = ThetastarState::Probing(visited_navnode);
return Ok(ControlFlow::Continue(self.state));
}
entry.insert(next_score);
}
Entry::Vacant(entry) => {
entry.insert(next_score);
}
}
self.push_to_frontier(next, next_score, visited_navnode, strategy);
self.state = ThetastarState::Probing(visited_navnode);
Ok(ControlFlow::Continue(self.state))
} else {
self.state = ThetastarState::VisitFrontierNavedge(visited_navnode);
Ok(ControlFlow::Continue(self.state))
}
}
ThetastarState::Probing(visited_navnode) => {
strategy.remove_probe(&self.graph);
self.state = ThetastarState::VisitFrontierNavedge(visited_navnode);
Ok(ControlFlow::Continue(self.state))
}
}
}
}
impl<G, K> EstimateProgress for ThetastarStepper<G, K>
where
G: GraphBase,
G::NodeId: Eq + Ord,
for<'a> &'a G: IntoEdges<NodeId = G::NodeId, EdgeId = G::EdgeId> + MakeEdgeRef,
K: Measure + Copy + Sub<Output = K>,
{
type Value = K;
fn estimate_progress_value(&self) -> K {
self.progress_estimate_value
}
fn estimate_progress_maximum(&self) -> K {
self.progress_estimate_maximum
}
}