topola/src/router/navmesh.rs

630 lines
21 KiB
Rust

// SPDX-FileCopyrightText: 2024 Topola contributors
//
// SPDX-License-Identifier: MIT
use std::collections::BTreeMap;
use derive_getters::Getters;
use enum_dispatch::enum_dispatch;
use geo::Point;
use petgraph::{
data::DataMap,
graph::UnGraph,
stable_graph::NodeIndex,
visit::{
Data, EdgeRef, GraphBase, IntoEdgeReferences, IntoEdges, IntoNeighbors,
IntoNodeIdentifiers, NodeIndexable,
},
};
use spade::{HasPosition, InsertionError, Point2};
use thiserror::Error;
use crate::{
drawing::{
bend::{FixedBendIndex, LooseBendIndex},
dot::{DotIndex, FixedDotIndex},
gear::{GearIndex, GetNextGear},
graph::{GetMaybeNet, MakePrimitive, PrimitiveIndex},
primitive::{GetCore, GetJoints, MakePrimitiveShape, Primitive},
rules::AccessRules,
seg::{FixedSegIndex, LoneLooseSegIndex, SegIndex, SeqLooseSegIndex},
Drawing,
},
geometry::{shape::AccessShape, GetLayer},
graph::{GetPetgraphIndex, MakeRef},
layout::Layout,
math::RotationSense,
router::thetastar::MakeEdgeRef,
triangulation::{GetTrianvertexNodeIndex, Triangulation},
};
use super::RouterOptions;
#[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)]
pub struct NavnodeIndex(pub NodeIndex<usize>);
impl core::fmt::Debug for NavnodeIndex {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "NavnodeIndex({})", self.0.index())
}
}
impl GetPetgraphIndex for NavnodeIndex {
fn petgraph_index(&self) -> NodeIndex<usize> {
self.0
}
}
/// A binavnode is a pair of navnodes, one clockwise and the other
/// counterclockwise. Unlike their constituents, binavnodes are themselves
/// not considered navnodes.
#[enum_dispatch(GetPetgraphIndex, MakePrimitive)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum BinavnodeNodeIndex {
FixedDot(FixedDotIndex),
FixedBend(FixedBendIndex),
LooseBend(LooseBendIndex),
}
impl From<BinavnodeNodeIndex> for PrimitiveIndex {
fn from(vertex: BinavnodeNodeIndex) -> Self {
match vertex {
BinavnodeNodeIndex::FixedDot(dot) => PrimitiveIndex::FixedDot(dot),
BinavnodeNodeIndex::FixedBend(bend) => PrimitiveIndex::FixedBend(bend),
BinavnodeNodeIndex::LooseBend(bend) => PrimitiveIndex::LooseBend(bend),
}
}
}
impl From<BinavnodeNodeIndex> for GearIndex {
fn from(vertex: BinavnodeNodeIndex) -> Self {
match vertex {
BinavnodeNodeIndex::FixedDot(dot) => GearIndex::FixedDot(dot),
BinavnodeNodeIndex::FixedBend(bend) => GearIndex::FixedBend(bend),
BinavnodeNodeIndex::LooseBend(bend) => GearIndex::LooseBend(bend),
}
}
}
/// Trianvertices are the vertices of the triangulation before it is converted
/// to the navmesh by multiplying each of them into more vertices (called
/// navnodes). Every trianvertex corresponds to one or more binavnodes on
/// the navmesh.
///
/// The name "trianvertex" is a shortening of "triangulation vertex".
#[enum_dispatch(GetPetgraphIndex, MakePrimitive)]
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
pub enum TrianvertexNodeIndex {
FixedDot(FixedDotIndex),
FixedBend(FixedBendIndex),
}
impl From<TrianvertexNodeIndex> for BinavnodeNodeIndex {
fn from(trianvertex: TrianvertexNodeIndex) -> Self {
match trianvertex {
TrianvertexNodeIndex::FixedDot(dot) => BinavnodeNodeIndex::FixedDot(dot),
TrianvertexNodeIndex::FixedBend(bend) => BinavnodeNodeIndex::FixedBend(bend),
}
}
}
#[derive(Debug, Clone, Copy)]
pub struct TrianvertexWeight {
pub node: TrianvertexNodeIndex,
pub pos: Point,
}
impl TrianvertexWeight {
fn new_from_fixed_dot(layout: &Layout<impl AccessRules>, dot: FixedDotIndex) -> Self {
Self {
node: dot.into(),
pos: dot.primitive(layout.drawing()).shape().center(),
}
}
fn new_from_fixed_bend(layout: &Layout<impl AccessRules>, bend: FixedBendIndex) -> Self {
Self {
node: bend.into(),
pos: bend.primitive(layout.drawing()).shape().center(),
}
}
}
impl GetTrianvertexNodeIndex<TrianvertexNodeIndex> for TrianvertexWeight {
fn node_index(&self) -> TrianvertexNodeIndex {
self.node
}
}
impl HasPosition for TrianvertexWeight {
type Scalar = f64;
fn position(&self) -> Point2<Self::Scalar> {
Point2::new(self.pos.x(), self.pos.y())
}
}
#[derive(Clone)]
pub struct NavmeshTriangulationConstraint(pub TrianvertexWeight, pub TrianvertexWeight);
impl NavmeshTriangulationConstraint {
fn new_from_fixed_dot_pair(
layout: &Layout<impl AccessRules>,
from_dot: FixedDotIndex,
to_dot: FixedDotIndex,
) -> Self {
Self(
TrianvertexWeight::new_from_fixed_dot(layout, from_dot),
TrianvertexWeight::new_from_fixed_dot(layout, to_dot),
)
}
fn new_from_lone_loose_seg(layout: &Layout<impl AccessRules>, seg: LoneLooseSegIndex) -> Self {
let (from_dot, to_dot) = layout.drawing().primitive(seg).joints();
Self::new_from_fixed_dot_pair(layout, from_dot, to_dot)
}
fn new_from_seq_loose_seg(layout: &Layout<impl AccessRules>, seg: SeqLooseSegIndex) -> Self {
let (from_joint, to_joint) = layout.drawing().primitive(seg).joints();
let from_dot = match from_joint {
DotIndex::Fixed(dot) => dot,
DotIndex::Loose(dot) => {
let bend = layout.drawing().primitive(dot).bend();
layout.drawing().primitive(bend).core()
}
};
let to_bend = layout.drawing().primitive(to_joint).bend();
let to_dot = layout.drawing().primitive(to_bend).core();
Self::new_from_fixed_dot_pair(layout, from_dot, to_dot)
}
fn new_from_fixed_seg(layout: &Layout<impl AccessRules>, seg: FixedSegIndex) -> Self {
let (from_dot, to_dot) = layout.drawing().primitive(seg).joints();
Self::new_from_fixed_dot_pair(layout, from_dot, to_dot)
}
}
/// The terms "navnode" and "navmesh vertex", "navmesh node", "navigation
/// vertex", "navigation node" are all equivalent.
///
/// See the following blog post for more information and a visualization of the navmesh
/// during autorouting: <https://topola.dev/blog/2024/07/20/junejuly-2024-development-update/#advanced-debug-visualization>
#[derive(Debug, Clone)]
pub struct NavnodeWeight {
pub node: BinavnodeNodeIndex,
/// There are two navnodes for each navigable node:
/// one is clockwise (`Some(true)`), the other counterclockwise (`Some(false)`).
/// The origin and destination nodes however have
/// only one corresponding navmesh vertex each (`None`).
pub maybe_sense: Option<RotationSense>,
}
#[derive(Error, Debug, Clone)]
pub enum NavmeshError {
#[error("failed to insert vertex in navmesh")]
Insertion(#[from] InsertionError),
}
type NavmeshTriangulation = Triangulation<TrianvertexNodeIndex, TrianvertexWeight, ()>;
/// The navmesh holds the entire Topola's search space represented as a graph.
/// Topola's routing works by navigating over this graph with a pathfinding
/// algorithm such as A* while drawing a track segment (always a cane except
/// when going directly to destination) on the layout for each leap and
/// along-edge crossing.
///
/// The name "navmesh" is a blend of "navigation mesh".
#[derive(Clone, Getters)]
pub struct Navmesh {
graph: UnGraph<NavnodeWeight, (), usize>,
#[getter(skip)]
origin: FixedDotIndex,
#[getter(skip)]
origin_navnode: NavnodeIndex,
#[getter(skip)]
destination: FixedDotIndex,
#[getter(skip)]
destination_navnode: NavnodeIndex,
/// Original triangulation stored for debugging purposes.
// XXX: Maybe have a way to compile this out in release?
triangulation: NavmeshTriangulation,
// Original triangulation constraints stored for debugging purposes.
// XXX: Maybe have a way to compile this out in release?
constraints: Vec<NavmeshTriangulationConstraint>,
}
impl Navmesh {
/// Creates a new navmesh.
pub fn new(
layout: &Layout<impl AccessRules>,
origin: FixedDotIndex,
destination: FixedDotIndex,
options: RouterOptions,
) -> Result<Self, NavmeshError> {
let mut triangulation: NavmeshTriangulation =
NavmeshTriangulation::new(layout.drawing().geometry().graph().node_bound());
let mut constraints = vec![];
let layer = layout.drawing().primitive(origin).layer();
let maybe_net = layout.drawing().primitive(origin).maybe_net();
for node in layout.drawing().layer_primitive_nodes(layer) {
let primitive = node.primitive(layout.drawing());
if let Some(primitive_net) = primitive.maybe_net() {
if node == origin.into()
|| node == destination.into()
|| Some(primitive_net) != maybe_net
{
match node {
PrimitiveIndex::FixedDot(dot) => {
triangulation
.add_vertex(TrianvertexWeight::new_from_fixed_dot(layout, dot))?;
}
PrimitiveIndex::LoneLooseSeg(seg) => {
Self::add_constraint(
&mut triangulation,
&mut constraints,
NavmeshTriangulationConstraint::new_from_lone_loose_seg(
layout, seg,
),
)?;
}
PrimitiveIndex::SeqLooseSeg(seg) => {
Self::add_constraint(
&mut triangulation,
&mut constraints,
NavmeshTriangulationConstraint::new_from_seq_loose_seg(layout, seg),
)?;
}
PrimitiveIndex::FixedBend(bend) => {
triangulation
.add_vertex(TrianvertexWeight::new_from_fixed_bend(layout, bend))?;
}
_ => (),
}
}
}
}
for node in layout.drawing().layer_primitive_nodes(layer) {
let primitive = node.primitive(layout.drawing());
if let Some(primitive_net) = primitive.maybe_net() {
if node == origin.into()
|| node == destination.into()
|| Some(primitive_net) != maybe_net
{
// If you have a band that was routed from a polygonal pad,
// when you will start a new routing some of the constraint
// edges created from the loose segs of a band will
// intersect some of the constraint edges created from the
// fixed segs constituting the pad boundary.
//
// Such constraint intersections are erroneous and cause
// Spade to throw a panic at runtime. So, to prevent this
// from occuring, we iterate over the layout for the second
// time, after all the constraint edges from bands have been
// placed, and only then add constraint edges created from
// fixed segs that do not cause an intersection.
match node {
PrimitiveIndex::FixedSeg(seg) => {
let constraint =
NavmeshTriangulationConstraint::new_from_fixed_seg(layout, seg);
if !triangulation.intersects_constraint(&constraint.0, &constraint.1) {
Self::add_constraint(
&mut triangulation,
&mut constraints,
constraint,
);
}
}
_ => (),
}
}
}
}
Self::new_from_triangulation(
layout,
triangulation,
origin,
destination,
constraints,
options,
)
}
fn add_constraint(
triangulation: &mut NavmeshTriangulation,
constraints: &mut Vec<NavmeshTriangulationConstraint>,
constraint: NavmeshTriangulationConstraint,
) -> Result<(), InsertionError> {
triangulation.add_constraint_edge(constraint.0, constraint.1)?;
constraints.push(constraint);
Ok(())
}
fn new_from_triangulation(
layout: &Layout<impl AccessRules>,
triangulation: NavmeshTriangulation,
origin: FixedDotIndex,
destination: FixedDotIndex,
constraints: Vec<NavmeshTriangulationConstraint>,
options: RouterOptions,
) -> Result<Self, NavmeshError> {
let mut graph: UnGraph<NavnodeWeight, (), usize> = UnGraph::default();
let mut origin_navnode = None;
let mut destination_navnode = None;
let mut map = BTreeMap::new();
for trianvertex in triangulation.node_identifiers() {
if trianvertex == origin.into() {
let navnode = graph.add_node(NavnodeWeight {
node: trianvertex.into(),
maybe_sense: None,
});
origin_navnode = Some(navnode);
map.insert(trianvertex, vec![(navnode, navnode)]);
} else if trianvertex == destination.into() {
let navnode = graph.add_node(NavnodeWeight {
node: trianvertex.into(),
maybe_sense: None,
});
destination_navnode = Some(navnode);
map.insert(trianvertex, vec![(navnode, navnode)]);
} else {
map.insert(trianvertex, vec![]);
let mut gear =
Into::<GearIndex>::into(Into::<BinavnodeNodeIndex>::into(trianvertex));
if options.squeeze_through_under_bends {
Self::add_trianvertex_to_graph_and_map_as_binavnode(
&mut graph,
&mut map,
trianvertex,
trianvertex.into(),
);
if options.wrap_around_bands {
while let Some(bend) = gear.ref_(layout.drawing()).next_gear() {
Self::add_trianvertex_to_graph_and_map_as_binavnode(
&mut graph,
&mut map,
trianvertex,
bend.into(),
);
gear = bend.into();
}
}
} else if let Some(first_bend) = gear.ref_(layout.drawing()).next_gear() {
let mut bend = first_bend;
while let Some(next_bend) = gear.ref_(layout.drawing()).next_gear() {
bend = next_bend;
gear = bend.into();
}
Self::add_trianvertex_to_graph_and_map_as_binavnode(
&mut graph,
&mut map,
trianvertex,
bend.into(),
);
} else {
Self::add_trianvertex_to_graph_and_map_as_binavnode(
&mut graph,
&mut map,
trianvertex,
trianvertex.into(),
);
}
}
}
for edge in triangulation.edge_references() {
Self::add_trianedge_to_graph_as_quadrinavedge(
&mut graph,
&map,
edge.source(),
edge.target(),
);
}
// The existence of a constraint edge does not (!) guarantee that this
// edge exactly will be present in the triangulation. It appears that
// Spade splits a constraint edge into two if an endpoint of another
// constraint lies on it.
//
// So now we go over all the constraints and make sure that
// quadrinavedges exist for every one of them.
for constraint in constraints.iter() {
Self::add_trianedge_to_graph_as_quadrinavedge(
&mut graph,
&map,
constraint.0.node,
constraint.1.node,
);
}
Ok(Self {
graph,
origin,
origin_navnode: NavnodeIndex(origin_navnode.unwrap()),
destination,
destination_navnode: NavnodeIndex(destination_navnode.unwrap()),
triangulation,
constraints,
})
}
fn add_trianvertex_to_graph_and_map_as_binavnode(
graph: &mut UnGraph<NavnodeWeight, (), usize>,
map: &mut BTreeMap<TrianvertexNodeIndex, Vec<(NodeIndex<usize>, NodeIndex<usize>)>>,
trianvertex: TrianvertexNodeIndex,
node: BinavnodeNodeIndex,
) {
let navnode1 = graph.add_node(NavnodeWeight {
node,
maybe_sense: Some(RotationSense::Counterclockwise),
});
let navnode2 = graph.add_node(NavnodeWeight {
node,
maybe_sense: Some(RotationSense::Clockwise),
});
map.get_mut(&trianvertex)
.unwrap()
.push((navnode1, navnode2));
}
fn add_trianedge_to_graph_as_quadrinavedge(
graph: &mut UnGraph<NavnodeWeight, (), usize>,
map: &BTreeMap<TrianvertexNodeIndex, Vec<(NodeIndex<usize>, NodeIndex<usize>)>>,
from_trianvertex: TrianvertexNodeIndex,
to_trianvertex: TrianvertexNodeIndex,
) {
for (from_navnode1, from_navnode2) in map[&from_trianvertex].iter() {
for (to_navnode1, to_navnode2) in map[&to_trianvertex].iter() {
graph.update_edge(*from_navnode1, *to_navnode1, ());
graph.update_edge(*from_navnode1, *to_navnode2, ());
graph.update_edge(*from_navnode2, *to_navnode1, ());
graph.update_edge(*from_navnode2, *to_navnode2, ());
}
}
}
/// Returns the origin node.
pub fn origin(&self) -> FixedDotIndex {
self.origin
}
/// Returns the navnode of the origin node.
pub fn origin_navnode(&self) -> NavnodeIndex {
self.origin_navnode
}
/// Returns the destination node.
pub fn destination(&self) -> FixedDotIndex {
self.destination
}
/// Returns the navnode of the destination node.
pub fn destination_navnode(&self) -> NavnodeIndex {
self.destination_navnode
}
}
impl GraphBase for Navmesh {
type NodeId = NavnodeIndex;
type EdgeId = (NavnodeIndex, NavnodeIndex);
}
impl Data for Navmesh {
type NodeWeight = NavnodeWeight;
type EdgeWeight = ();
}
impl DataMap for Navmesh {
fn node_weight(&self, vertex: Self::NodeId) -> Option<&Self::NodeWeight> {
self.graph.node_weight(vertex.petgraph_index())
}
fn edge_weight(&self, _edge: Self::EdgeId) -> Option<&Self::EdgeWeight> {
None
}
}
#[derive(Debug, Clone, Copy)]
pub struct NavmeshEdgeReference {
from: NavnodeIndex,
to: NavnodeIndex,
}
impl EdgeRef for NavmeshEdgeReference {
type NodeId = NavnodeIndex;
type EdgeId = (NavnodeIndex, NavnodeIndex);
type Weight = ();
fn source(&self) -> Self::NodeId {
self.from
}
fn target(&self) -> Self::NodeId {
self.to
}
fn weight(&self) -> &Self::Weight {
&()
}
fn id(&self) -> Self::EdgeId {
(self.from, self.to)
}
}
impl<'a> IntoNeighbors for &'a Navmesh {
type Neighbors = Box<dyn Iterator<Item = NavnodeIndex> + 'a>;
fn neighbors(self, vertex: Self::NodeId) -> Self::Neighbors {
Box::new(
self.graph
.neighbors(vertex.petgraph_index())
.map(NavnodeIndex),
)
}
}
impl<'a> IntoEdgeReferences for &'a Navmesh {
type EdgeRef = NavmeshEdgeReference;
type EdgeReferences = Box<dyn Iterator<Item = NavmeshEdgeReference> + 'a>;
fn edge_references(self) -> Self::EdgeReferences {
Box::new(
self.graph
.edge_references()
.map(|edge| NavmeshEdgeReference {
from: NavnodeIndex(edge.source()),
to: NavnodeIndex(edge.target()),
}),
)
}
}
impl<'a> IntoEdges for &'a Navmesh {
type Edges = Box<dyn Iterator<Item = NavmeshEdgeReference> + 'a>;
fn edges(self, vertex: Self::NodeId) -> Self::Edges {
Box::new(
self.graph
.edges(vertex.petgraph_index())
.map(|edge| NavmeshEdgeReference {
from: NavnodeIndex(edge.source()),
to: NavnodeIndex(edge.target()),
}),
)
}
}
impl<'a> MakeEdgeRef for &'a Navmesh {
fn edge_ref(
&self,
edge_id: <&'a Navmesh as GraphBase>::EdgeId,
) -> <&'a Navmesh as IntoEdgeReferences>::EdgeRef {
NavmeshEdgeReference {
from: edge_id.0,
to: edge_id.1,
}
}
}