topola/src/math/polygon_tangents.rs

190 lines
6.5 KiB
Rust

// SPDX-FileCopyrightText: 2025 Topola contributors
//
// SPDX-License-Identifier: MIT
use super::{
between_vectors, between_vectors_cached, cyclic_breadth_partition_search, perp_dot_product,
};
use geo::Point;
#[derive(Clone, Debug, thiserror::Error, PartialEq)]
pub enum PolyTangentException<I> {
#[error("trying to target empty polygon")]
EmptyTargetPolygon { origin: Point },
#[error("invalid polygon tangent arguments")]
InvalidData {
poly_ext: Box<[(Point, I)]>,
origin: Point,
},
}
/// Caches the `perp_dot_product` call in [`between_vectors`]
pub struct CachedPolyExt<I>(pub Box<[(Point, I, f64)]>, bool);
impl<I: Copy + Eq> CachedPolyExt<I> {
pub fn new(poly_ext: &[(Point, I)], poly_ext_is_cw: bool) -> Self {
assert!(!poly_ext.is_empty());
Self(
poly_ext
.iter()
.enumerate()
.map(|(i, &(cur, index))| {
let prev = poly_ext[(poly_ext.len() + i - 1) % poly_ext.len()].0;
let next = poly_ext[(i + 1) % poly_ext.len()].0;
let cross = perp_dot_product(cur - prev, cur - next);
(cur, index, cross)
})
.collect(),
poly_ext_is_cw,
)
}
/// Calculates the tangents to the polygon exterior going through point `origin`.
pub fn tangent_points(&self, origin: Point) -> Option<(I, I)> {
let poly_ext = &self.0;
debug_assert!(!poly_ext.is_empty());
let (pos_false, pos_true) =
cyclic_breadth_partition_search(0..poly_ext.len(), &|i: usize| {
let prev = &poly_ext[(poly_ext.len() + i - 1) % poly_ext.len()];
let cur = &poly_ext[i];
let next = &poly_ext[(i + 1) % poly_ext.len()];
// local coordinate system with origin at `cur.0`.
between_vectors_cached(cur.0 - origin, cur.0 - prev.0, cur.0 - next.0, cur.2)
});
let (mut pos_false, mut pos_true) =
if let (Some(pos_false), Some(pos_true)) = (pos_false, pos_true) {
(pos_false, pos_true)
} else {
return None;
};
// * `pos_false` points to the maximum
// * `pos_true` points to the minimum
// NOTE: although pos_{false,true} are vertex indices, they are actually
// referring to the "critical" segment(s) (pos_false, pos_false + 1) (and resp. for pos_true).
// because that is where the `between_vectors` result flips.
// These critical segments are independent of CW/CCW.
// if `poly_ext` is oriented CCW, then
// * `pos_false` will be one too early, and
// * `pos_true` will be correct.
// if `poly_ext` is oriented CW, then
// * `pos_false` will be correct.
// * `pos_true` will be one too early, and
// TODO: can we (without too much overhead) determine if `poly_ext` is CW or CCW?
if self.1 {
pos_true += 1;
pos_true %= poly_ext.len();
} else {
pos_false += 1;
pos_false %= poly_ext.len();
}
Some((poly_ext[pos_true].1, poly_ext[pos_false].1))
}
}
/// Calculates the tangents to the polygon exterior `poly_ext` oriented `cw?=poly_ext_is_cw`
/// going through point `origin`.
pub fn poly_ext_tangent_points<I: Copy>(
poly_ext: &[(Point, I)],
poly_ext_is_cw: bool,
origin: Point,
) -> Result<(I, I), PolyTangentException<I>> {
if poly_ext.is_empty() {
return Err(PolyTangentException::EmptyTargetPolygon { origin });
}
let (pos_false, pos_true) = cyclic_breadth_partition_search(0..poly_ext.len(), &|i: usize| {
let prev = &poly_ext[(poly_ext.len() + i - 1) % poly_ext.len()];
let cur = &poly_ext[i];
let next = &poly_ext[(i + 1) % poly_ext.len()];
// local coordinate system with origin at `cur.0`.
between_vectors(cur.0 - origin, cur.0 - prev.0, cur.0 - next.0)
});
let (mut pos_false, mut pos_true) =
if let (Some(pos_false), Some(pos_true)) = (pos_false, pos_true) {
(pos_false, pos_true)
} else {
return Err(PolyTangentException::InvalidData {
poly_ext: poly_ext.to_vec().into_boxed_slice(),
origin,
});
};
// * `pos_false` points to the maximum
// * `pos_true` points to the minimum
// NOTE: although pos_{false,true} are vertex indices, they are actually
// referring to the "critical" segment(s) (pos_false, pos_false + 1) (and resp. for pos_true).
// because that is where the `between_vectors` result flips.
// These critical segments are independent of CW/CCW.
// if `poly_ext` is oriented CCW, then
// * `pos_false` will be one too early, and
// * `pos_true` will be correct.
// if `poly_ext` is oriented CW, then
// * `pos_false` will be correct.
// * `pos_true` will be one too early, and
// TODO: can we (without too much overhead) determine if `poly_ext` is CW or CCW?
if poly_ext_is_cw {
pos_true += 1;
pos_true %= poly_ext.len();
} else {
pos_false += 1;
pos_false %= poly_ext.len();
}
Ok((poly_ext[pos_true].1, poly_ext[pos_false].1))
}
#[cfg(test)]
mod tests {
use super::poly_ext_tangent_points as petp;
use crate::drawing::dot::FixedDotIndex;
use geo::point;
#[test]
fn petp00() {
let poly_ext = &[
(point! { x: 0.0, y: 0.0 }, FixedDotIndex::new(0.into())),
(point! { x: 1.0, y: 0.0 }, FixedDotIndex::new(1.into())),
(point! { x: 1.0, y: 1.0 }, FixedDotIndex::new(2.into())),
(point! { x: 0.0, y: 1.0 }, FixedDotIndex::new(3.into())),
];
let origin = point! { x: 0.5, y: -1.0 };
assert_eq!(
petp(poly_ext, false, origin),
Ok((FixedDotIndex::new(1.into()), FixedDotIndex::new(0.into())))
);
}
#[test]
fn petp00cw() {
let poly_ext = &[
(point! { x: 0.0, y: 0.0 }, FixedDotIndex::new(0.into())),
(point! { x: 0.0, y: 1.0 }, FixedDotIndex::new(3.into())),
(point! { x: 1.0, y: 1.0 }, FixedDotIndex::new(2.into())),
(point! { x: 1.0, y: 0.0 }, FixedDotIndex::new(1.into())),
];
let origin = point! { x: 0.5, y: -1.0 };
assert_eq!(
petp(poly_ext, true, origin),
Ok((FixedDotIndex::new(1.into()), FixedDotIndex::new(0.into())))
);
}
}