topola/crates/planar-incr-embed/src/algo/pmg_astar.rs

561 lines
19 KiB
Rust

// SPDX-FileCopyrightText: 2025 Topola contributors
// SPDX-FileCopyrightText: 2021 petgraph contributors
//
// SPDX-License-Identifier: MIT
//
//! planar multi-goal A*-like path search implementation
use crate::{
algo::{Goal, PreparedGoal},
mayrev::MaybeReversed,
navmesh::{EdgeIndex, EdgePaths, Navmesh, NavmeshRef, NavmeshRefMut},
Edge, NavmeshBase, NavmeshIndex, RelaxedPath,
};
use alloc::collections::{BTreeMap, BinaryHeap};
use alloc::{boxed::Box, sync::Arc, vec::Vec};
use core::{cmp::Ordering, ops::ControlFlow};
use num_traits::float::TotalOrder;
/// A walk task
#[derive(Clone, Debug)]
pub struct Task<B: NavmeshBase, Ctx> {
/// index of current goal
pub goal_idx: usize,
/// costs / weights accumulated so far
pub costs: B::Scalar,
/// estimated minimal costs until goal
pub estimated_remaining: B::Scalar,
/// estimated minimal costs for all remaining goals after this one
pub estimated_remaining_goals: B::Scalar,
/// the current navmesh edge paths
pub edge_paths: Box<[EdgePaths<B::EtchedPath, B::GapComment>]>,
/// the currently selected node
pub selected_node: NavmeshIndex<B::PrimalNodeIndex>,
/// the previously selected node
pub prev_node: NavmeshIndex<B::PrimalNodeIndex>,
/// the introduction position re: `selected_node`
pub cur_intro: usize,
/// associated context (ignored during comparisons)
pub context: Ctx,
}
/// Results after a [`Task`] is done.
#[derive(Clone, Debug)]
pub struct TaskResult<B: NavmeshBase, Ctx> {
/// index of current goal
pub goal_idx: usize,
/// costs / weights accumulated so far
pub costs: B::Scalar,
/// the current navmesh edges
pub edge_paths: Box<[EdgePaths<B::EtchedPath, B::GapComment>]>,
/// the previously selected node
pub prev_node: NavmeshIndex<B::PrimalNodeIndex>,
/// the introduction position re: `target`
pub cur_intro: usize,
/// the associated context
pub context: Ctx,
}
#[derive(Clone, Debug, PartialEq)]
pub struct InsertionInfo<B: NavmeshBase> {
pub prev_node: NavmeshIndex<B::PrimalNodeIndex>,
pub cur_node: NavmeshIndex<B::PrimalNodeIndex>,
pub edge_meta: Edge<B::PrimalNodeIndex>,
pub epi: MaybeReversed<usize, RelaxedPath<B::EtchedPath, B::GapComment>>,
/// the introduction position re: `prev_node` -edge-> `cur_node`
pub intro: usize,
pub maybe_new_goal: Option<B::EtchedPath>,
}
pub trait EvaluateNavmesh<B: NavmeshBase, Ctx>:
FnMut(NavmeshRef<B>, &Ctx, InsertionInfo<B>) -> Option<(B::Scalar, Ctx)>
{
}
impl<B, Ctx, F> EvaluateNavmesh<B, Ctx> for F
where
B: NavmeshBase,
F: FnMut(NavmeshRef<B>, &Ctx, InsertionInfo<B>) -> Option<(B::Scalar, Ctx)>,
{
}
/// The main path search data structure
#[derive(Clone, Debug)]
pub struct PmgAstar<B: NavmeshBase, Ctx> {
/// task queue, ordered by costs ascending
pub queue: BinaryHeap<Task<B, Ctx>>,
// constant data
pub nodes:
Arc<BTreeMap<NavmeshIndex<B::PrimalNodeIndex>, crate::Node<B::PrimalNodeIndex, B::Scalar>>>,
pub edges: Arc<
BTreeMap<EdgeIndex<NavmeshIndex<B::PrimalNodeIndex>>, (Edge<B::PrimalNodeIndex>, usize)>,
>,
pub goals: Box<[PreparedGoal<B>]>,
}
impl<B: NavmeshBase, Ctx> Task<B, Ctx>
where
B::Scalar: num_traits::Float,
{
fn edge_paths_count(&self) -> usize {
self.edge_paths.iter().map(|i| i.len()).sum::<usize>()
}
fn estimated_full_costs(&self) -> B::Scalar {
self.costs + self.estimated_remaining + self.estimated_remaining_goals
}
}
impl<B: NavmeshBase, Ctx> PartialEq for Task<B, Ctx>
where
B::PrimalNodeIndex: Ord,
B::EtchedPath: PartialOrd,
B::GapComment: PartialOrd,
B::Scalar: num_traits::Float + num_traits::float::TotalOrder + PartialOrd,
{
fn eq(&self, other: &Self) -> bool {
self.estimated_full_costs()
.total_cmp(&other.estimated_full_costs())
== Ordering::Equal
&& self.goal_idx == other.goal_idx
&& other.edge_paths_count() == self.edge_paths_count()
&& self.selected_node == other.selected_node
&& self.prev_node == other.prev_node
&& self.cur_intro == other.cur_intro
&& self
.edge_paths
.partial_cmp(&other.edge_paths)
.map(|i| i == Ordering::Equal)
.unwrap_or(true)
}
}
impl<B: NavmeshBase, Ctx> Eq for Task<B, Ctx>
where
B::PrimalNodeIndex: Ord,
B::EtchedPath: PartialOrd,
B::GapComment: PartialOrd,
B::Scalar: num_traits::Float + num_traits::float::TotalOrder + PartialOrd,
{
}
// tasks are ordered such that smaller costs and higher goal indices are ordered as being larger (better)
impl<B: NavmeshBase, Ctx> Ord for Task<B, Ctx>
where
B::PrimalNodeIndex: Ord,
B::EtchedPath: PartialOrd,
B::GapComment: PartialOrd,
B::Scalar: num_traits::Float + num_traits::float::TotalOrder + PartialOrd,
{
fn cmp(&self, other: &Self) -> Ordering {
// smaller costs are better
other
.estimated_full_costs()
.total_cmp(&self.estimated_full_costs())
// higher goal index is better
.then_with(|| self.goal_idx.cmp(&other.goal_idx))
// less inserted paths in edges are better
.then_with(|| other.edge_paths_count().cmp(&self.edge_paths_count()))
// tie-break on the rest
.then_with(|| self.selected_node.cmp(&other.selected_node))
.then_with(|| self.prev_node.cmp(&other.prev_node))
.then_with(|| self.cur_intro.cmp(&other.cur_intro))
.then_with(|| {
self.edge_paths
.partial_cmp(&other.edge_paths)
.unwrap_or(Ordering::Equal)
})
}
}
impl<B: NavmeshBase, Ctx> PartialOrd for Task<B, Ctx>
where
B::PrimalNodeIndex: Ord,
B::EtchedPath: PartialOrd,
B::GapComment: PartialOrd,
B::Scalar: num_traits::Float + num_traits::float::TotalOrder + PartialOrd,
{
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<B: NavmeshBase<Scalar = Scalar>, Scalar: num_traits::Float + core::iter::Sum, Ctx>
PmgAstar<B, Ctx>
{
fn estimate_remaining_goals_costs(&self, start_goal_idx: usize) -> Scalar {
self.goals
.get(start_goal_idx + 1..)
.map(|rgoals| rgoals.iter().map(|i| i.minimal_costs).sum())
.unwrap_or_else(Scalar::zero)
}
}
impl<B: NavmeshBase> PreparedGoal<B>
where
B::EtchedPath: PartialOrd,
B::GapComment: PartialOrd + Clone,
B::Scalar: num_traits::Float + num_traits::float::TotalOrder + core::iter::Sum,
{
/// start processing the goal
fn start_pmga<Ctx, F: EvaluateNavmesh<B, Ctx>>(
&self,
navmesh: NavmeshRef<'_, B>,
goal_idx: usize,
env: &PmgAstar<B, Ctx>,
context: &Ctx,
evaluate_navmesh: &mut F,
) -> BinaryHeap<Task<B, Ctx>> {
let source = NavmeshIndex::Primal(self.source.clone());
let estimated_remaining_goals = env.estimate_remaining_goals_costs(goal_idx);
let neighs = match navmesh.node_data(&source) {
None => return BinaryHeap::new(),
Some(x) => &x.neighs,
};
let mut ret = BinaryHeap::new();
// NOTE: this uses a `for` loop to get around borrowing problems with `evaluate_navmesh`
for (neigh, emeta, epi, edge_len) in neighs.iter().filter_map({
let source = source.clone();
move |neigh| {
navmesh
.resolve_edge_data(source.clone(), neigh.clone())
.map(|(emeta, epi)| {
let edge_len = navmesh.access_edge_paths(epi).len();
(neigh, emeta.to_owned(), epi, edge_len)
})
}
}) {
let source = source.clone();
// A*-like remaining costs estimation
let estimated_remaining =
self.estimate_costs_for_source::<B::GapComment>(navmesh, neigh);
for i in 0..=edge_len {
let mut edge_paths = Box::from(navmesh.edge_paths);
let mut navmesh = NavmeshRefMut {
nodes: navmesh.nodes,
edges: navmesh.edges,
edge_paths: &mut edge_paths,
};
navmesh
.access_edge_paths_mut(epi)
.with_borrow_mut(|mut j| j.insert(i, RelaxedPath::Normal(self.label.clone())));
if let Some(new_task) = (*evaluate_navmesh)(
navmesh.as_ref(),
context,
InsertionInfo {
prev_node: source.clone(),
cur_node: neigh.clone(),
edge_meta: emeta.clone(),
epi,
intro: i,
maybe_new_goal: Some(self.label.clone()),
},
)
.map(|(costs, context)| Task {
goal_idx,
costs,
estimated_remaining,
estimated_remaining_goals,
edge_paths,
selected_node: neigh.clone(),
prev_node: source.clone(),
cur_intro: edge_len - i,
context,
}) {
ret.push(new_task);
}
}
}
ret
}
}
impl<B: NavmeshBase, Ctx> Task<B, Ctx>
where
B::EtchedPath: PartialOrd,
B::GapComment: Clone + PartialOrd,
B::Scalar: num_traits::Float + num_traits::float::TotalOrder,
{
pub fn run<F: EvaluateNavmesh<B, Ctx>>(
self,
env: &mut PmgAstar<B, Ctx>,
evaluate_navmesh: F,
) -> ControlFlow<TaskResult<B, Ctx>, (Self, Vec<NavmeshIndex<B::PrimalNodeIndex>>)> {
if let NavmeshIndex::Primal(primal) = &self.selected_node {
if env.goals[self.goal_idx].target.contains(primal) {
let Self {
goal_idx,
costs,
estimated_remaining: _,
estimated_remaining_goals: _,
edge_paths,
prev_node,
cur_intro,
selected_node: _,
context,
} = self;
return ControlFlow::Break(TaskResult {
goal_idx,
costs,
edge_paths,
prev_node,
cur_intro,
context,
});
} else {
panic!("wrong primal node selected");
}
}
let forks = self.progress(env, evaluate_navmesh);
ControlFlow::Continue((self, forks))
}
/// progress to the next step, splitting the task into new tasks (make sure to call `done` beforehand)
fn progress<F: EvaluateNavmesh<B, Ctx>>(
&self,
env: &mut PmgAstar<B, Ctx>,
mut evaluate_navmesh: F,
) -> Vec<NavmeshIndex<B::PrimalNodeIndex>> {
let goal_idx = self.goal_idx;
let navmesh = NavmeshRef {
nodes: &env.nodes,
edges: &env.edges,
edge_paths: &self.edge_paths,
};
let goal = &env.goals[goal_idx];
let Some((_, other_ends)) = navmesh.planarr_find_all_other_ends(
&self.selected_node,
&self.prev_node,
self.cur_intro,
true,
) else {
return Vec::new();
};
let mut ret = Vec::new();
env.queue
.extend(other_ends.filter_map(|(neigh, stop_data)| {
if let NavmeshIndex::Primal(primal) = &neigh {
if !goal.target.contains(primal) {
return None;
}
}
// A*-like remaining costs estimation
let estimated_remaining =
goal.estimate_costs_for_source::<B::GapComment>(navmesh, &neigh);
let mut edge_paths = self.edge_paths.clone();
let mut navmesh = NavmeshRefMut {
nodes: &env.nodes,
edges: &env.edges,
edge_paths: &mut edge_paths,
};
let (edge_meta, epi) = navmesh
.resolve_edge_data(self.selected_node.clone(), neigh.clone())
.unwrap();
let edge_meta = edge_meta.to_owned();
let cur_intro = navmesh.access_edge_paths_mut(epi).with_borrow_mut(|mut x| {
x.insert(
stop_data.insert_pos,
RelaxedPath::Normal(goal.label.clone()),
);
x.len() - stop_data.insert_pos - 1
});
ret.push(neigh.clone());
evaluate_navmesh(
navmesh.as_ref(),
&self.context,
InsertionInfo {
prev_node: self.selected_node.clone(),
cur_node: neigh.clone(),
edge_meta,
epi,
intro: stop_data.insert_pos,
maybe_new_goal: None,
},
)
.map(|(costs, context)| Task {
goal_idx,
costs,
estimated_remaining,
estimated_remaining_goals: self.estimated_remaining_goals,
edge_paths,
selected_node: neigh.clone(),
prev_node: self.selected_node.clone(),
cur_intro,
context,
})
}));
ret
}
}
#[derive(Clone, Debug, PartialEq)]
pub struct IntermedResult<B: NavmeshBase, Ctx> {
pub edge_paths: Box<[EdgePaths<B::EtchedPath, B::GapComment>]>,
// TODO: maybe avoid these clones?
pub context: Ctx,
pub goal_idx: usize,
pub forks: Vec<NavmeshIndex<B::PrimalNodeIndex>>,
pub selected_node: NavmeshIndex<B::PrimalNodeIndex>,
pub maybe_finished_goal: Option<B::Scalar>,
}
impl<B, Ctx> PmgAstar<B, Ctx>
where
B: NavmeshBase,
B::EtchedPath: PartialOrd,
B::GapComment: Clone + PartialOrd,
B::Scalar: Default
+ core::fmt::Debug
+ core::iter::Sum
+ num_traits::Float
+ num_traits::float::TotalOrder,
{
/// * `evaluate_navmesh` calculates the exact cost of a given navmesh (lower cost is better)
pub fn new<F: EvaluateNavmesh<B, Ctx>>(
navmesh: &Navmesh<B>,
goals: Vec<Goal<B::PrimalNodeIndex, B::EtchedPath>>,
context: &Ctx,
mut evaluate_navmesh: F,
) -> Self {
let mut this = Self {
queue: BinaryHeap::new(),
goals: goals
.into_iter()
.map({
let navmesh = navmesh.as_ref();
move |i| i.prepare(navmesh)
})
.collect(),
nodes: navmesh.nodes.clone(),
edges: navmesh.edges.clone(),
};
// fill queue with first goal
if let Some(first_goal) = this.goals.first() {
this.queue = {
let navmesh = NavmeshRef {
nodes: &this.nodes,
edges: &this.edges,
edge_paths: &navmesh.edge_paths,
};
first_goal.start_pmga(navmesh, 0, &this, context, &mut evaluate_navmesh)
};
}
this
}
pub fn queue_len(&self) -> usize {
self.queue.len()
}
/// run one step of the path-search
pub fn step<F: EvaluateNavmesh<B, Ctx>>(
&mut self,
mut evaluate_navmesh: F,
) -> ControlFlow<
Option<(
B::Scalar,
Box<[EdgePaths<B::EtchedPath, B::GapComment>]>,
Ctx,
)>,
IntermedResult<B, Ctx>,
>
where
B::PrimalNodeIndex: core::fmt::Debug,
{
let Some(task) = self.queue.pop() else {
log::info!("found no complete result");
return ControlFlow::Break(None);
};
ControlFlow::Continue(match task.run(self, &mut evaluate_navmesh) {
ControlFlow::Break(taskres) => {
let next_goal_idx = taskres.goal_idx + 1;
let navmesh = NavmeshRef {
nodes: &self.nodes,
edges: &self.edges,
edge_paths: &taskres.edge_paths,
};
let edge_count = taskres.edge_paths.iter().map(|i| i.len()).sum::<usize>();
match self.goals.get(next_goal_idx) {
None => {
// done with all goals
log::info!(
"found result with {} edges and costs {:?}",
edge_count,
taskres.costs
);
return ControlFlow::Break(Some((
taskres.costs,
taskres.edge_paths,
taskres.context,
)));
}
Some(next_goal) => {
// prepare next goal
log::debug!(
"found partial result (goal {}) with {} edges and costs {:?}",
taskres.goal_idx,
edge_count,
taskres.costs,
);
let mut tmp = next_goal.start_pmga(
navmesh,
next_goal_idx,
self,
&taskres.context,
&mut evaluate_navmesh,
);
let forks = tmp.iter().map(|i| i.selected_node.clone()).collect();
self.queue.append(&mut tmp);
IntermedResult {
goal_idx: taskres.goal_idx,
forks,
edge_paths: taskres.edge_paths,
context: taskres.context,
selected_node: NavmeshIndex::Primal(next_goal.source.clone()),
maybe_finished_goal: Some(taskres.costs),
}
}
}
}
ControlFlow::Continue((task, forks)) => {
// task got further branched
IntermedResult {
goal_idx: task.goal_idx,
forks,
edge_paths: task.edge_paths,
context: task.context,
selected_node: task.selected_node,
maybe_finished_goal: None,
}
}
})
}
}