topola/src/router/astar.rs

344 lines
12 KiB
Rust

// Copyright (c) 2015
// SPDX-FileCopyrightText: 2024 Topola contributors
//
// SPDX-License-Identifier: MIT
use std::collections::btree_map::Entry;
use std::collections::{BTreeMap, BinaryHeap, VecDeque};
use std::ops::ControlFlow;
use derive_getters::Getters;
use petgraph::algo::Measure;
use petgraph::visit::{EdgeRef, GraphBase, IntoEdgeReferences, IntoEdges};
use thiserror::Error;
use std::cmp::Ordering;
use crate::stepper::Step;
#[derive(Copy, Clone, Debug)]
pub struct MinScored<K, T>(pub K, pub T);
impl<K: PartialOrd, T> PartialEq for MinScored<K, T> {
#[inline]
fn eq(&self, other: &MinScored<K, T>) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl<K: PartialOrd, T> Eq for MinScored<K, T> {}
impl<K: PartialOrd, T> PartialOrd for MinScored<K, T> {
#[inline]
fn partial_cmp(&self, other: &MinScored<K, T>) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<K: PartialOrd, T> Ord for MinScored<K, T> {
#[inline]
fn cmp(&self, other: &MinScored<K, T>) -> Ordering {
let a = &self.0;
let b = &other.0;
if a == b {
Ordering::Equal
} else if a < b {
Ordering::Greater
} else if a > b {
Ordering::Less
} else if a.ne(a) && b.ne(b) {
// these are the NaN cases
Ordering::Equal
} else if a.ne(a) {
// Order NaN less, so that it is last in the MinScore order
Ordering::Less
} else {
Ordering::Greater
}
}
}
#[derive(Debug)]
pub struct PathTracker<G>
where
G: GraphBase,
G::NodeId: Eq + Ord,
{
came_from: BTreeMap<G::NodeId, G::NodeId>,
}
impl<G> PathTracker<G>
where
G: GraphBase,
G::NodeId: Eq + Ord,
{
fn new() -> PathTracker<G> {
PathTracker {
came_from: BTreeMap::new(),
}
}
fn set_predecessor(&mut self, node: G::NodeId, previous: G::NodeId) {
self.came_from.insert(node, previous);
}
pub fn reconstruct_path_to(&self, last: G::NodeId) -> Vec<G::NodeId> {
let mut path = vec![last];
let mut current = last;
while let Some(&previous) = self.came_from.get(&current) {
path.push(previous);
current = previous;
}
path.reverse();
path
}
}
pub trait AstarStrategy<G, K, R>
where
G: GraphBase,
G::NodeId: Eq + Ord,
for<'a> &'a G: IntoEdges<NodeId = G::NodeId, EdgeId = G::EdgeId> + MakeEdgeRef,
K: Measure + Copy,
{
fn visit_navnode(
&mut self,
graph: &G,
node: G::NodeId,
tracker: &PathTracker<G>,
) -> Result<Option<R>, ()>;
fn place_probe_at_navedge<'a>(
&mut self,
graph: &'a G,
edge: <&'a G as IntoEdgeReferences>::EdgeRef,
) -> Option<K>;
fn remove_probe(&mut self, graph: &G);
fn estimate_cost(&mut self, graph: &G, node: G::NodeId) -> K;
}
pub trait MakeEdgeRef: IntoEdgeReferences {
fn edge_ref(&self, edge_id: Self::EdgeId) -> Self::EdgeRef;
}
enum AstarState<G>
where
G: GraphBase,
{
Scanning,
Visiting(G::NodeId),
Probing(G::NodeId, G::EdgeId),
}
#[derive(Getters)]
pub struct AstarStepper<G, K>
where
G: GraphBase,
G::NodeId: Eq + Ord,
for<'a> &'a G: IntoEdges<NodeId = G::NodeId, EdgeId = G::EdgeId> + MakeEdgeRef,
K: Measure + Copy,
{
state: AstarState<G>,
graph: G,
#[getter(skip)]
visit_next: BinaryHeap<MinScored<K, G::NodeId>>,
/// Also known as the g-scores, or just g.
scores: BTreeMap<G::NodeId, K>,
/// Also known as the f-scores, or just f.
estimate_scores: BTreeMap<G::NodeId, K>,
#[getter(skip)]
path_tracker: PathTracker<G>,
// FIXME: To work around edge references borrowing from the graph we collect then reiterate over them.
#[getter(skip)]
edge_ids: VecDeque<G::EdgeId>,
}
/// The status enum of the A* stepper returned when there is no failure or
/// break.
///
/// Note that, when thinking of the A* stepper as of a state machine, the
/// variants of the status actually correspond to state transitions, not to
/// states themselves, since `Probing` and `ProbingButDiscarded`, and likewise
/// `VisitSkipped` and `Visited`, would correspond to the same state.
#[derive(Debug)]
pub enum AstarContinueStatus {
/// A* has now attempted to visit a new navnode, but it turned out that
/// it has been previously reached through a path with an equal or lower
/// estimated score, so the visit to that navnode has been skipped.
ScanningVisitSkipped,
/// A* has failed to visit a new navnode. Happens, so A* will just proceed
/// to the next node in the priority queue.
ScanningVisitFailed,
/// A* is now visiting a new navnode.
///
/// Quick recap if you have been trying to remember what is the difference
/// between probing and visiting: probing is done as part of a scan of
/// neighboring navnodes around the currently visited navnode to add them to
/// the priority queue, whereas when a navnode is visited it is taken from
/// the priority queue to actually become the currently visited navnode.
Visiting,
/// A* has now placed a probe to measure the cost of the edge to a
/// neighboring navnode from the current position. The probed navnode has
/// been added to the priority queue, and the newly measured edge cost has
/// been stored in a map.
Probing,
/// A* has now placed a probe, but it turned out that the probed navnode has
/// been previously reached through a path with equal or lower score, so the
/// probe's measurement has been discarded. The probe, however, will be only
/// removed in the next state just as if it was after the normal `Probing`
/// status.
ProbingButDiscarded,
/// The probe that had been placed in the previous state has now been
/// removed.
///
/// The probe is only removed in this separate state to make it possible
/// to pause the A* while the placed probe exists, which is very useful
/// for debugging.
Probed,
}
#[derive(Error, Debug, Clone)]
pub enum AstarError {
#[error("A* search found no path")]
NotFound,
}
impl<G, K> AstarStepper<G, K>
where
G: GraphBase,
G::NodeId: Eq + Ord,
for<'a> &'a G: IntoEdges<NodeId = G::NodeId, EdgeId = G::EdgeId> + MakeEdgeRef,
K: Measure + Copy,
{
pub fn new<R>(graph: G, start: G::NodeId, strategy: &mut impl AstarStrategy<G, K, R>) -> Self {
let mut this = Self {
state: AstarState::Scanning,
graph,
visit_next: BinaryHeap::new(),
scores: BTreeMap::new(),
estimate_scores: BTreeMap::new(),
path_tracker: PathTracker::<G>::new(),
edge_ids: VecDeque::new(),
};
let zero_score = K::default();
this.scores.insert(start, zero_score);
this.visit_next
.push(MinScored(strategy.estimate_cost(&this.graph, start), start));
this
}
}
impl<G, K, R, S: AstarStrategy<G, K, R>> Step<S, (K, Vec<G::NodeId>, R), AstarContinueStatus>
for AstarStepper<G, K>
where
G: GraphBase,
G::NodeId: Eq + Ord,
for<'a> &'a G: IntoEdges<NodeId = G::NodeId, EdgeId = G::EdgeId> + MakeEdgeRef,
K: Measure + Copy,
{
type Error = AstarError;
fn step(
&mut self,
strategy: &mut S,
) -> Result<ControlFlow<(K, Vec<G::NodeId>, R), AstarContinueStatus>, AstarError> {
match self.state {
AstarState::Scanning => {
let Some(MinScored(estimate_score, node)) = self.visit_next.pop() else {
return Err(AstarError::NotFound);
};
let Ok(maybe_result) =
strategy.visit_navnode(&self.graph, node, &self.path_tracker)
else {
return Ok(ControlFlow::Continue(
AstarContinueStatus::ScanningVisitFailed,
));
};
if let Some(result) = maybe_result {
let path = self.path_tracker.reconstruct_path_to(node);
let cost = self.scores[&node];
return Ok(ControlFlow::Break((cost, path, result)));
}
match self.estimate_scores.entry(node) {
Entry::Occupied(mut entry) => {
// If the node has already been visited with an equal or lower
// estimated score than now, then we do not need to re-visit it.
if *entry.get() <= estimate_score {
return Ok(ControlFlow::Continue(
AstarContinueStatus::ScanningVisitSkipped,
));
}
entry.insert(estimate_score);
}
Entry::Vacant(entry) => {
entry.insert(estimate_score);
}
}
self.edge_ids = self.graph.edges(node).map(|edge| edge.id()).collect();
self.state = AstarState::Visiting(node);
Ok(ControlFlow::Continue(AstarContinueStatus::Visiting))
}
AstarState::Visiting(curr_visited_navnode) => {
if let Some(curr_probed_navedge) = self.edge_ids.pop_front() {
// This lookup can be unwrapped without fear of panic since the node was
// necessarily scored before adding it to `.visit_next`.
let node_score = self.scores[&curr_visited_navnode];
let curr_probed_navedge_ref = (&self.graph).edge_ref(curr_probed_navedge);
if let Some(edge_cost) =
strategy.place_probe_at_navedge(&self.graph, curr_probed_navedge_ref)
{
let next = curr_probed_navedge_ref.target();
let next_score = node_score + edge_cost;
match self.scores.entry(next) {
Entry::Occupied(mut entry) => {
// No need to add neighbors that we have already reached through a
// shorter path than now.
if *entry.get() <= next_score {
return Ok(ControlFlow::Continue(
AstarContinueStatus::ProbingButDiscarded,
));
}
entry.insert(next_score);
}
Entry::Vacant(entry) => {
entry.insert(next_score);
}
}
self.path_tracker
.set_predecessor(next, curr_visited_navnode);
let next_estimate_score =
next_score + strategy.estimate_cost(&self.graph, next);
self.visit_next.push(MinScored(next_estimate_score, next));
self.state = AstarState::Probing(curr_visited_navnode, curr_probed_navedge);
Ok(ControlFlow::Continue(AstarContinueStatus::Probing))
} else {
Ok(ControlFlow::Continue(AstarContinueStatus::Probed))
}
} else {
self.state = AstarState::Scanning;
Ok(ControlFlow::Continue(AstarContinueStatus::Probed))
}
}
AstarState::Probing(curr_visited_navnode, _curr_probed_navedge) => {
strategy.remove_probe(&self.graph);
self.state = AstarState::Visiting(curr_visited_navnode);
Ok(ControlFlow::Continue(AstarContinueStatus::Probed))
}
}
}
}