topola/src/router/navmesh.rs

465 lines
15 KiB
Rust

// SPDX-FileCopyrightText: 2024 Topola contributors
//
// SPDX-License-Identifier: MIT
use std::collections::BTreeMap;
use derive_getters::Getters;
use enum_dispatch::enum_dispatch;
use petgraph::{
data::DataMap,
graph::UnGraph,
stable_graph::NodeIndex,
visit::{
Data, EdgeRef, GraphBase, IntoEdgeReferences, IntoEdges, IntoNeighbors,
IntoNodeIdentifiers, Walker,
},
};
use spade::InsertionError;
use thiserror::Error;
use crate::{
drawing::{
bend::{FixedBendIndex, LooseBendIndex},
dot::FixedDotIndex,
gear::{GearIndex, GetOuterGears, WalkOutwards},
graph::{MakePrimitive, PrimitiveIndex},
primitive::Primitive,
rules::AccessRules,
Drawing,
},
graph::{GetPetgraphIndex, MakeRef},
layout::Layout,
math::RotationSense,
router::thetastar::MakeEdgeRef,
};
use super::{
prenavmesh::{Prenavmesh, PrenavmeshNodeIndex},
RouterOptions,
};
#[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)]
pub struct NavnodeIndex(pub NodeIndex<usize>);
impl core::fmt::Debug for NavnodeIndex {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "NavnodeIndex({})", self.0.index())
}
}
impl GetPetgraphIndex for NavnodeIndex {
fn petgraph_index(&self) -> NodeIndex<usize> {
self.0
}
}
/// A binavnode is a pair of navnodes, one clockwise and the other
/// counterclockwise. Unlike their constituents, binavnodes are themselves
/// not considered navnodes.
#[enum_dispatch(GetPetgraphIndex, MakePrimitive)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum BinavnodeNodeIndex {
FixedDot(FixedDotIndex),
FixedBend(FixedBendIndex),
LooseBend(LooseBendIndex),
}
impl From<PrenavmeshNodeIndex> for BinavnodeNodeIndex {
fn from(node: PrenavmeshNodeIndex) -> Self {
match node {
PrenavmeshNodeIndex::FixedDot(dot) => BinavnodeNodeIndex::FixedDot(dot),
PrenavmeshNodeIndex::FixedBend(bend) => BinavnodeNodeIndex::FixedBend(bend),
}
}
}
impl From<BinavnodeNodeIndex> for PrimitiveIndex {
fn from(node: BinavnodeNodeIndex) -> Self {
match node {
BinavnodeNodeIndex::FixedDot(dot) => PrimitiveIndex::FixedDot(dot),
BinavnodeNodeIndex::FixedBend(bend) => PrimitiveIndex::FixedBend(bend),
BinavnodeNodeIndex::LooseBend(bend) => PrimitiveIndex::LooseBend(bend),
}
}
}
impl From<BinavnodeNodeIndex> for GearIndex {
fn from(node: BinavnodeNodeIndex) -> Self {
match node {
BinavnodeNodeIndex::FixedDot(dot) => GearIndex::FixedDot(dot),
BinavnodeNodeIndex::FixedBend(bend) => GearIndex::FixedBend(bend),
BinavnodeNodeIndex::LooseBend(bend) => GearIndex::LooseBend(bend),
}
}
}
/// The terms "navnode" and "navmesh vertex", "navmesh node", "navigation
/// vertex", "navigation node" are all equivalent.
///
/// See the following blog post for more information and a visualization of the navmesh
/// during autorouting: <https://topola.dev/blog/2024/07/20/junejuly-2024-development-update/#advanced-debug-visualization>
#[derive(Debug, Clone)]
pub struct NavnodeWeight {
pub binavnode: BinavnodeNodeIndex,
/// There are two navnodes for each navigable node:
/// one is clockwise (`Some(true)`), the other counterclockwise (`Some(false)`).
/// The origin and destination nodes however have
/// only one corresponding navmesh vertex each (`None`).
pub maybe_sense: Option<RotationSense>,
}
#[derive(Error, Debug, Clone)]
pub enum NavmeshError {
#[error("failed to insert vertex in navmesh")]
Insertion(#[from] InsertionError),
}
/// The navmesh holds the entire Topola's search space represented as a graph.
/// Topola's routing works by navigating over this graph with a pathfinding
/// algorithm such as A* while drawing a track segment (always a cane except
/// when going directly to destination) on the layout for each leap and
/// along-edge crossing.
///
/// The name "navmesh" is a blend of "navigation mesh".
#[derive(Clone, Getters)]
pub struct Navmesh {
graph: UnGraph<NavnodeWeight, (), usize>,
#[getter(skip)]
origin: FixedDotIndex,
#[getter(skip)]
origin_navnode: NavnodeIndex,
#[getter(skip)]
destination: FixedDotIndex,
#[getter(skip)]
destination_navnode: NavnodeIndex,
/// Original constrainted triangulation stored for debugging purposes.
prenavmesh: Prenavmesh,
}
impl Navmesh {
/// Creates a new navmesh.
pub fn new(
layout: &Layout<impl AccessRules>,
origin: FixedDotIndex,
destination: FixedDotIndex,
options: RouterOptions,
) -> Result<Self, NavmeshError> {
let prenavmesh = Prenavmesh::new(layout, origin, destination, options)?;
Self::new_from_prenavmesh(layout, prenavmesh, origin, destination, options)
}
fn new_from_prenavmesh(
layout: &Layout<impl AccessRules>,
prenavmesh: Prenavmesh,
origin: FixedDotIndex,
destination: FixedDotIndex,
options: RouterOptions,
) -> Result<Self, NavmeshError> {
let mut graph: UnGraph<NavnodeWeight, (), usize> = UnGraph::default();
let mut origin_navnode = None;
let mut destination_navnode = None;
let mut map = BTreeMap::new();
for trianvertex in prenavmesh.triangulation().node_identifiers() {
if trianvertex == origin.into() {
let navnode = graph.add_node(NavnodeWeight {
binavnode: trianvertex.into(),
maybe_sense: None,
});
origin_navnode = Some(navnode);
map.insert(trianvertex, vec![(navnode, navnode)]);
} else if trianvertex == destination.into() {
let navnode = graph.add_node(NavnodeWeight {
binavnode: trianvertex.into(),
maybe_sense: None,
});
destination_navnode = Some(navnode);
map.insert(trianvertex, vec![(navnode, navnode)]);
} else {
map.insert(trianvertex, vec![]);
let gear = Into::<GearIndex>::into(Into::<BinavnodeNodeIndex>::into(trianvertex));
if options.squeeze_through_under_bends {
Self::add_trianvertex_to_graph_and_map_as_binavnode(
&mut graph,
&mut map,
trianvertex,
trianvertex.into(),
);
if options.wrap_around_bands {
let mut outwards = gear.ref_(layout.drawing()).outwards();
while let Some(outward) = outwards.walk_next(layout.drawing()) {
Self::add_trianvertex_to_graph_and_map_as_binavnode(
&mut graph,
&mut map,
trianvertex,
outward.into(),
);
}
}
} else if !gear.ref_(layout.drawing()).outer_gears().is_empty() {
let mut outwards = gear.ref_(layout.drawing()).outwards();
while let Some(outward) = outwards.walk_next(layout.drawing()) {
if layout
.drawing()
.primitive(outward)
.outers()
.collect::<Vec<_>>()
.is_empty()
{
Self::add_trianvertex_to_graph_and_map_as_binavnode(
&mut graph,
&mut map,
trianvertex,
outward.into(),
);
}
}
} else {
Self::add_trianvertex_to_graph_and_map_as_binavnode(
&mut graph,
&mut map,
trianvertex,
trianvertex.into(),
);
}
}
}
for edge in prenavmesh.triangulation().edge_references() {
Self::add_trianedge_to_graph_as_quadrinavedge(
&mut graph,
&map,
edge.source(),
edge.target(),
);
// TODO: This shouldn't depend on clearance.
for source_intersector in layout
.drawing()
.clearance_intersectors(edge.source().into())
{
let source = match source_intersector.1 {
PrimitiveIndex::FixedDot(dot) => PrenavmeshNodeIndex::FixedDot(dot),
PrimitiveIndex::FixedBend(bend) => PrenavmeshNodeIndex::FixedBend(bend),
_ => continue,
};
if !map.contains_key(&source) {
continue;
}
for target_intersector in layout
.drawing()
.clearance_intersectors(edge.target().into())
{
let target = match target_intersector.1 {
PrimitiveIndex::FixedDot(dot) => PrenavmeshNodeIndex::FixedDot(dot),
PrimitiveIndex::FixedBend(bend) => PrenavmeshNodeIndex::FixedBend(bend),
_ => continue,
};
if !map.contains_key(&target) {
continue;
}
Self::add_trianedge_to_graph_as_quadrinavedge(&mut graph, &map, source, target);
}
}
}
// The existence of a constraint edge does not (!) guarantee that this
// edge exactly will be present in the triangulation. It appears that
// Spade splits a constraint edge into two if an endpoint of another
// constraint lies on it.
//
// So now we go over all the constraints and make sure that
// quadrinavedges exist for every one of them.
for constraint in prenavmesh.constraints() {
Self::add_trianedge_to_graph_as_quadrinavedge(
&mut graph,
&map,
constraint.0.node,
constraint.1.node,
);
}
Ok(Self {
graph,
origin,
origin_navnode: NavnodeIndex(origin_navnode.unwrap()),
destination,
destination_navnode: NavnodeIndex(destination_navnode.unwrap()),
prenavmesh,
})
}
fn add_trianvertex_to_graph_and_map_as_binavnode(
graph: &mut UnGraph<NavnodeWeight, (), usize>,
map: &mut BTreeMap<PrenavmeshNodeIndex, Vec<(NodeIndex<usize>, NodeIndex<usize>)>>,
trianvertex: PrenavmeshNodeIndex,
node: BinavnodeNodeIndex,
) {
let navnode1 = graph.add_node(NavnodeWeight {
binavnode: node,
maybe_sense: Some(RotationSense::Counterclockwise),
});
let navnode2 = graph.add_node(NavnodeWeight {
binavnode: node,
maybe_sense: Some(RotationSense::Clockwise),
});
map.get_mut(&trianvertex)
.unwrap()
.push((navnode1, navnode2));
}
fn add_trianedge_to_graph_as_quadrinavedge(
graph: &mut UnGraph<NavnodeWeight, (), usize>,
map: &BTreeMap<PrenavmeshNodeIndex, Vec<(NodeIndex<usize>, NodeIndex<usize>)>>,
from_trianvertex: PrenavmeshNodeIndex,
to_trianvertex: PrenavmeshNodeIndex,
) {
for (from_navnode1, from_navnode2) in map[&from_trianvertex].iter() {
for (to_navnode1, to_navnode2) in map[&to_trianvertex].iter() {
graph.update_edge(*from_navnode1, *to_navnode1, ());
graph.update_edge(*from_navnode1, *to_navnode2, ());
graph.update_edge(*from_navnode2, *to_navnode1, ());
graph.update_edge(*from_navnode2, *to_navnode2, ());
}
}
}
/// Returns the origin node.
pub fn origin(&self) -> FixedDotIndex {
self.origin
}
/// Returns the navnode of the origin node.
pub fn origin_navnode(&self) -> NavnodeIndex {
self.origin_navnode
}
/// Returns the destination node.
pub fn destination(&self) -> FixedDotIndex {
self.destination
}
/// Returns the navnode of the destination node.
pub fn destination_navnode(&self) -> NavnodeIndex {
self.destination_navnode
}
}
impl GraphBase for Navmesh {
type NodeId = NavnodeIndex;
type EdgeId = (NavnodeIndex, NavnodeIndex);
}
impl Data for Navmesh {
type NodeWeight = NavnodeWeight;
type EdgeWeight = ();
}
impl DataMap for Navmesh {
fn node_weight(&self, vertex: Self::NodeId) -> Option<&Self::NodeWeight> {
self.graph.node_weight(vertex.petgraph_index())
}
fn edge_weight(&self, _edge: Self::EdgeId) -> Option<&Self::EdgeWeight> {
None
}
}
#[derive(Debug, Clone, Copy)]
pub struct NavmeshEdgeReference {
from: NavnodeIndex,
to: NavnodeIndex,
}
impl EdgeRef for NavmeshEdgeReference {
type NodeId = NavnodeIndex;
type EdgeId = (NavnodeIndex, NavnodeIndex);
type Weight = ();
fn source(&self) -> Self::NodeId {
self.from
}
fn target(&self) -> Self::NodeId {
self.to
}
fn weight(&self) -> &Self::Weight {
&()
}
fn id(&self) -> Self::EdgeId {
(self.from, self.to)
}
}
impl<'a> IntoNeighbors for &'a Navmesh {
type Neighbors = Box<dyn Iterator<Item = NavnodeIndex> + 'a>;
fn neighbors(self, vertex: Self::NodeId) -> Self::Neighbors {
Box::new(
self.graph
.neighbors(vertex.petgraph_index())
.map(NavnodeIndex),
)
}
}
impl<'a> IntoEdgeReferences for &'a Navmesh {
type EdgeRef = NavmeshEdgeReference;
type EdgeReferences = Box<dyn Iterator<Item = NavmeshEdgeReference> + 'a>;
fn edge_references(self) -> Self::EdgeReferences {
Box::new(
self.graph
.edge_references()
.map(|edge| NavmeshEdgeReference {
from: NavnodeIndex(edge.source()),
to: NavnodeIndex(edge.target()),
}),
)
}
}
impl<'a> IntoEdges for &'a Navmesh {
type Edges = Box<dyn Iterator<Item = NavmeshEdgeReference> + 'a>;
fn edges(self, vertex: Self::NodeId) -> Self::Edges {
Box::new(
self.graph
.edges(vertex.petgraph_index())
.map(|edge| NavmeshEdgeReference {
from: NavnodeIndex(edge.source()),
to: NavnodeIndex(edge.target()),
}),
)
}
}
impl<'a> MakeEdgeRef for &'a Navmesh {
fn edge_ref(
&self,
edge_id: <&'a Navmesh as GraphBase>::EdgeId,
) -> <&'a Navmesh as IntoEdgeReferences>::EdgeRef {
NavmeshEdgeReference {
from: edge_id.0,
to: edge_id.1,
}
}
}