use geo::{geometry::Point, point, EuclideanDistance, Line}; use thiserror::Error; #[derive(Error, Debug, Clone, Copy, PartialEq)] #[error("no tangents for {0:?} and {1:?}")] // TODO add real error message pub struct NoTangents(pub Circle, pub Circle); #[derive(Debug, Clone, Copy, PartialEq)] pub struct CanonicalLine { pub a: f64, pub b: f64, pub c: f64, } pub use specctra_core::math::{Circle, PointWithRotation}; fn _tangent(center: Point, r1: f64, r2: f64) -> Result { let epsilon = 1e-9; let dr = r2 - r1; let norm = center.x() * center.x() + center.y() * center.y(); let discriminant = norm - dr * dr; if discriminant < -epsilon { return Err(()); } let sqrt_discriminant = f64::sqrt(f64::abs(discriminant)); Ok(CanonicalLine { a: (center.x() * dr + center.y() * sqrt_discriminant) / norm, b: (center.y() * dr - center.x() * sqrt_discriminant) / norm, c: r1, }) } fn _tangents(circle1: Circle, circle2: Circle) -> Result<[CanonicalLine; 4], ()> { let mut tgs: [CanonicalLine; 4] = [ _tangent((circle2 - circle1).pos, -circle1.r, -circle2.r)?, _tangent((circle2 - circle1).pos, -circle1.r, circle2.r)?, _tangent((circle2 - circle1).pos, circle1.r, -circle2.r)?, _tangent((circle2 - circle1).pos, circle1.r, circle2.r)?, ]; for tg in tgs.iter_mut() { tg.c -= tg.a * circle1.pos.x() + tg.b * circle1.pos.y(); } Ok(tgs) } fn cast_point_to_canonical_line(pt: Point, line: CanonicalLine) -> Point { ( (line.b * (line.b * pt.x() - line.a * pt.y()) - line.a * line.c) / (line.a * line.a + line.b * line.b), (line.a * (-line.b * pt.x() + line.a * pt.y()) - line.b * line.c) / (line.a * line.a + line.b * line.b), ) .into() } fn tangent_point_pairs( circle1: Circle, circle2: Circle, ) -> Result<[(Point, Point); 4], NoTangents> { let tgs = _tangents(circle1, circle2).map_err(|_| NoTangents(circle1, circle2))?; Ok([ ( cast_point_to_canonical_line(circle1.pos, tgs[0]), cast_point_to_canonical_line(circle2.pos, tgs[0]), ), ( cast_point_to_canonical_line(circle1.pos, tgs[1]), cast_point_to_canonical_line(circle2.pos, tgs[1]), ), ( cast_point_to_canonical_line(circle1.pos, tgs[2]), cast_point_to_canonical_line(circle2.pos, tgs[2]), ), ( cast_point_to_canonical_line(circle1.pos, tgs[3]), cast_point_to_canonical_line(circle2.pos, tgs[3]), ), ]) } pub fn tangent_segments( circle1: Circle, cw1: Option, circle2: Circle, cw2: Option, ) -> Result, NoTangents> { Ok(tangent_point_pairs(circle1, circle2)? .into_iter() .filter_map(move |tangent_point_pair| { if let Some(cw1) = cw1 { let cross1 = seq_cross_product(tangent_point_pair.0, tangent_point_pair.1, circle1.pos); if (cw1 && cross1 <= 0.0) || (!cw1 && cross1 >= 0.0) { return None; } } if let Some(cw2) = cw2 { let cross2 = seq_cross_product(tangent_point_pair.0, tangent_point_pair.1, circle2.pos); if (cw2 && cross2 >= 0.0) || (!cw2 && cross2 <= 0.0) { return None; } } Some(Line::new(tangent_point_pair.0, tangent_point_pair.1)) })) } pub fn tangent_segment( circle1: Circle, cw1: Option, circle2: Circle, cw2: Option, ) -> Result { Ok(tangent_segments(circle1, cw1, circle2, cw2)? .next() .unwrap()) } pub fn intersect_circles(circle1: &Circle, circle2: &Circle) -> Vec { let delta = circle2.pos - circle1.pos; let d = circle2.pos.euclidean_distance(&circle1.pos); if d > circle1.r + circle2.r { // No intersection. return vec![]; } if d < (circle2.r - circle1.r).abs() { // One contains the other. return vec![]; } // Distance from `circle1.pos` to the intersection of the diagonals. let a = (circle1.r * circle1.r - circle2.r * circle2.r + d * d) / (2.0 * d); // Intersection of the diagonals. let p = circle1.pos + delta * (a / d); let h = (circle1.r * circle1.r - a * a).sqrt(); if h == 0.0 { return [p].into(); } let r = point! {x: -delta.x(), y: delta.y()} * (h / d); [p + r, p - r].into() } pub fn intersect_circle_segment(circle: &Circle, segment: &Line) -> Vec { let delta: Point = segment.delta().into(); let from = segment.start_point(); let to = segment.end_point(); let epsilon = 1e-9; let interval01 = 0.0..=1.0; let a = delta.dot(delta); let b = 2.0 * (delta.x() * (from.x() - circle.pos.x()) + delta.y() * (from.y() - circle.pos.y())); let c = circle.pos.dot(circle.pos) + from.dot(from) - 2.0 * circle.pos.dot(from) - circle.r * circle.r; let discriminant = b * b - 4.0 * a * c; if a.abs() < epsilon || discriminant < 0.0 { return [].into(); } if discriminant == 0.0 { let u = -b / (2.0 * a); return if interval01.contains(&u) { vec![from + (to - from) * -b / (2.0 * a)] } else { vec![] }; } let mut v = vec![]; let u1 = (-b + discriminant.sqrt()) / (2.0 * a); if interval01.contains(&u1) { v.push(from + (to - from) * u1); } let u2 = (-b - discriminant.sqrt()) / (2.0 * a); if interval01.contains(&u2) { v.push(from + (to - from) * u2); } v } pub fn between_vectors(p: Point, from: Point, to: Point) -> bool { let cross = cross_product(from, to); if cross > 0.0 { cross_product(from, p) >= 0.0 && cross_product(p, to) >= 0.0 } else if cross < 0.0 { cross_product(from, p) >= 0.0 || cross_product(p, to) >= 0.0 } else { false } } /// Computes the (directed) angle between the positive X axis and the vector. /// /// The result is measured counterclockwise and normalized into range (-pi, pi] (like atan2). pub fn vector_angle(vector: Point) -> f64 { vector.y().atan2(vector.x()) } /// Computes the (directed) angle between two vectors. /// /// The result is measured counterclockwise and normalized into range (-pi, pi] (like atan2). pub fn angle_between(v1: Point, v2: Point) -> f64 { cross_product(v1, v2).atan2(dot_product(v1, v2)) } pub fn seq_cross_product(start: Point, stop: Point, reference: Point) -> f64 { let dx1 = stop.x() - start.x(); let dy1 = stop.y() - start.y(); let dx2 = reference.x() - stop.x(); let dy2 = reference.y() - stop.y(); cross_product((dx1, dy1).into(), (dx2, dy2).into()) } pub fn dot_product(v1: Point, v2: Point) -> f64 { v1.x() * v2.x() + v1.y() * v2.y() } pub fn cross_product(v1: Point, v2: Point) -> f64 { v1.x() * v2.y() - v1.y() * v2.x() }