refactor(math/line): Rename `NormalLine` to `LineInGeneralForm`

The previous name sounded as if it was a normal (to some surface), which
is not the case.
This commit is contained in:
Mikolaj Wielgus 2025-08-12 20:01:16 +02:00
parent 987a4c6e9e
commit 191e646d68
3 changed files with 46 additions and 46 deletions

View File

@ -26,7 +26,7 @@ use crate::{
}, },
graph::GetPetgraphIndex, graph::GetPetgraphIndex,
layout::{Layout, NodeIndex}, layout::{Layout, NodeIndex},
math::{intersect_linestring_and_ray, LineIntersection, NormalLine}, math::{intersect_linestring_and_ray, LineInGeneralForm, LineIntersection},
}; };
impl<R: AccessRules> Layout<R> { impl<R: AccessRules> Layout<R> {
@ -45,7 +45,7 @@ impl<R: AccessRules> Layout<R> {
to: right_pos, to: right_pos,
width: f64::EPSILON * 16.0, width: f64::EPSILON * 16.0,
}; };
let mut orig_hline = NormalLine::from(ltr_line); let mut orig_hline = LineInGeneralForm::from(ltr_line);
orig_hline.make_normal_unit(); orig_hline.make_normal_unit();
let orig_hline = orig_hline; let orig_hline = orig_hline;
let location_denom = orig_hline.segment_interval(&ltr_line); let location_denom = orig_hline.segment_interval(&ltr_line);
@ -78,7 +78,7 @@ impl<R: AccessRules> Layout<R> {
let band_uid = self.drawing.loose_band_uid(loose).ok()?; let band_uid = self.drawing.loose_band_uid(loose).ok()?;
let loose_hline = orig_hline.orthogonal_through(&match shape { let loose_hline = orig_hline.orthogonal_through(&match shape {
PrimitiveShape::Seg(seg) => { PrimitiveShape::Seg(seg) => {
let seg_hline = NormalLine::from(seg.middle_line()); let seg_hline = LineInGeneralForm::from(seg.middle_line());
match orig_hline.intersects(&seg_hline) { match orig_hline.intersects(&seg_hline) {
LineIntersection::Empty => return None, LineIntersection::Empty => return None,
LineIntersection::Overlapping => shape.center(), LineIntersection::Overlapping => shape.center(),
@ -92,7 +92,7 @@ impl<R: AccessRules> Layout<R> {
shape.center() shape.center()
} }
}); });
let location = (loose_hline.offset - location_start) / location_denom; let location = (loose_hline.c - location_start) / location_denom;
log::trace!( log::trace!(
"intersection ({:?}) with {:?} is at {:?}", "intersection ({:?}) with {:?} is at {:?}",
band_uid, band_uid,

View File

@ -14,13 +14,13 @@ pub enum LineIntersection {
/// A line in the normal form: `x0*y + y0*y + offset = 0`. /// A line in the normal form: `x0*y + y0*y + offset = 0`.
#[derive(Clone, Copy, Debug, PartialEq)] #[derive(Clone, Copy, Debug, PartialEq)]
pub struct NormalLine { pub struct LineInGeneralForm {
pub x: f64, pub a: f64,
pub y: f64, pub b: f64,
pub offset: f64, pub c: f64, // On the same equation side as a and b, not on the other.
} }
impl From<Line> for NormalLine { impl From<Line> for LineInGeneralForm {
fn from(l: Line) -> Self { fn from(l: Line) -> Self {
// the normal vector is perpendicular to the line // the normal vector is perpendicular to the line
let normal = point! { let normal = point! {
@ -28,28 +28,28 @@ impl From<Line> for NormalLine {
y: -l.dx(), y: -l.dx(),
}; };
Self { Self {
x: normal.0.x, a: normal.0.x,
y: normal.0.y, b: normal.0.y,
offset: -perp_dot_product(l.end.into(), l.start.into()), c: -perp_dot_product(l.end.into(), l.start.into()),
} }
} }
} }
impl NormalLine { impl LineInGeneralForm {
pub fn evaluate_at(&self, pt: Point) -> f64 { pub fn evaluate_at(&self, pt: Point) -> f64 {
self.x * pt.x() + self.y * pt.y() + self.offset self.a * pt.x() + self.b * pt.y() + self.c
} }
pub fn angle(&self) -> f64 { pub fn angle(&self) -> f64 {
self.y.atan2(self.x) self.b.atan2(self.a)
} }
pub fn make_normal_unit(&mut self) { pub fn make_normal_unit(&mut self) {
let normal_len = self.y.hypot(self.x); let normal_len = self.b.hypot(self.a);
if normal_len > (f64::EPSILON * 16.0) { if normal_len > (f64::EPSILON * 16.0) {
self.x /= normal_len; self.a /= normal_len;
self.y /= normal_len; self.b /= normal_len;
self.offset /= normal_len; self.c /= normal_len;
} }
} }
@ -58,11 +58,11 @@ impl NormalLine {
const ALMOST_ZERO: f64 = f64::EPSILON * 16.0; const ALMOST_ZERO: f64 = f64::EPSILON * 16.0;
let (mut a, mut b) = (*self, *b); let (mut a, mut b) = (*self, *b);
let _ = (a.make_normal_unit(), b.make_normal_unit()); let _ = (a.make_normal_unit(), b.make_normal_unit());
let apt = geo::point! { x: a.x, y: a.y }; let apt = geo::point! { x: a.a, y: a.b };
let bpt = geo::point! { x: b.x, y: b.y }; let bpt = geo::point! { x: b.a, y: b.b };
let det = perp_dot_product(apt, bpt); let det = perp_dot_product(apt, bpt);
let rpx = b.y * a.offset - a.y * b.offset; let rpx = b.b * a.c - a.b * b.c;
let rpy = -b.x * a.offset + a.x * b.offset; let rpy = -b.a * a.c + a.a * b.c;
if det.abs() > ALMOST_ZERO { if det.abs() > ALMOST_ZERO {
LineIntersection::Point(geo::point! { x: rpx, y: rpy } / det) LineIntersection::Point(geo::point! { x: rpx, y: rpy } / det)
@ -79,17 +79,17 @@ impl NormalLine {
pub fn orthogonal_through(&self, pt: &Point) -> Self { pub fn orthogonal_through(&self, pt: &Point) -> Self {
Self { Self {
// recover the original parallel vector // recover the original parallel vector
x: -self.y, a: -self.b,
y: self.x, b: self.a,
offset: self.x * pt.0.y - self.y * pt.0.x, c: self.a * pt.0.y - self.b * pt.0.x,
} }
} }
pub fn segment_interval(&self, line: &Line) -> core::ops::RangeInclusive<f64> { pub fn segment_interval(&self, line: &Line) -> core::ops::RangeInclusive<f64> {
// recover the original parallel vector // recover the original parallel vector
let parv = geo::point! { let parv = geo::point! {
x: -self.y, x: -self.b,
y: self.x, y: self.a,
}; };
dot_product(parv, line.start.into())..=dot_product(parv, line.end.into()) dot_product(parv, line.start.into())..=dot_product(parv, line.end.into())
} }
@ -106,8 +106,8 @@ impl NormalLine {
/// Returns `Some(p)` when `p` lies in the intersection of the given lines. /// Returns `Some(p)` when `p` lies in the intersection of the given lines.
pub fn intersect_lines(line1: &Line, line2: &Line) -> Option<Point> { pub fn intersect_lines(line1: &Line, line2: &Line) -> Option<Point> {
let nline1 = NormalLine::from(*line1); let nline1 = LineInGeneralForm::from(*line1);
let nline2 = NormalLine::from(*line2); let nline2 = LineInGeneralForm::from(*line2);
match nline1.intersects(&nline2) { match nline1.intersects(&nline2) {
LineIntersection::Empty | LineIntersection::Overlapping => None, LineIntersection::Empty | LineIntersection::Overlapping => None,
@ -139,8 +139,8 @@ pub fn intersect_lines(line1: &Line, line2: &Line) -> Option<Point> {
/// Returns `Some(p)` when `p` lies in the intersection of a line and a ray /// Returns `Some(p)` when `p` lies in the intersection of a line and a ray
/// (line which is only bounded at one side, i.e. point + directon) /// (line which is only bounded at one side, i.e. point + directon)
pub fn intersect_line_and_ray(line1: &Line, ray2: &Line) -> Option<Point> { pub fn intersect_line_and_ray(line1: &Line, ray2: &Line) -> Option<Point> {
let nline1 = NormalLine::from(*line1); let nline1 = LineInGeneralForm::from(*line1);
let nray2 = NormalLine::from(*ray2); let nray2 = LineInGeneralForm::from(*ray2);
match nline1.intersects(&nray2) { match nline1.intersects(&nray2) {
LineIntersection::Empty | LineIntersection::Overlapping => None, LineIntersection::Empty | LineIntersection::Overlapping => None,

View File

@ -6,13 +6,13 @@ use geo::{geometry::Point, Line};
use specctra_core::math::Circle; use specctra_core::math::Circle;
use thiserror::Error; use thiserror::Error;
use super::{seq_perp_dot_product, NormalLine, RotationSense}; use super::{seq_perp_dot_product, LineInGeneralForm, RotationSense};
#[derive(Error, Debug, Clone, Copy, PartialEq)] #[derive(Error, Debug, Clone, Copy, PartialEq)]
#[error("no tangents for {0:?} and {1:?}")] // TODO add real error message #[error("no tangents for {0:?} and {1:?}")] // TODO add real error message
pub struct NoTangents(pub Circle, pub Circle); pub struct NoTangents(pub Circle, pub Circle);
fn _tangent(center: Point, r1: f64, r2: f64) -> Result<NormalLine, ()> { fn _tangent(center: Point, r1: f64, r2: f64) -> Result<LineInGeneralForm, ()> {
let epsilon = 1e-9; let epsilon = 1e-9;
let dr = r2 - r1; let dr = r2 - r1;
let norm = center.x() * center.x() + center.y() * center.y(); let norm = center.x() * center.x() + center.y() * center.y();
@ -24,15 +24,15 @@ fn _tangent(center: Point, r1: f64, r2: f64) -> Result<NormalLine, ()> {
let sqrt_discriminant = f64::sqrt(f64::abs(discriminant)); let sqrt_discriminant = f64::sqrt(f64::abs(discriminant));
Ok(NormalLine { Ok(LineInGeneralForm {
x: (center.x() * dr + center.y() * sqrt_discriminant) / norm, a: (center.x() * dr + center.y() * sqrt_discriminant) / norm,
y: (center.y() * dr - center.x() * sqrt_discriminant) / norm, b: (center.y() * dr - center.x() * sqrt_discriminant) / norm,
offset: r1, c: r1,
}) })
} }
fn _tangents(circle1: Circle, circle2: Circle) -> Result<[NormalLine; 4], ()> { fn _tangents(circle1: Circle, circle2: Circle) -> Result<[LineInGeneralForm; 4], ()> {
let mut tgs: [NormalLine; 4] = [ let mut tgs: [LineInGeneralForm; 4] = [
_tangent((circle2 - circle1).pos, -circle1.r, -circle2.r)?, _tangent((circle2 - circle1).pos, -circle1.r, -circle2.r)?,
_tangent((circle2 - circle1).pos, -circle1.r, circle2.r)?, _tangent((circle2 - circle1).pos, -circle1.r, circle2.r)?,
_tangent((circle2 - circle1).pos, circle1.r, -circle2.r)?, _tangent((circle2 - circle1).pos, circle1.r, -circle2.r)?,
@ -40,18 +40,18 @@ fn _tangents(circle1: Circle, circle2: Circle) -> Result<[NormalLine; 4], ()> {
]; ];
for tg in tgs.iter_mut() { for tg in tgs.iter_mut() {
tg.offset -= tg.x * circle1.pos.x() + tg.y * circle1.pos.y(); tg.c -= tg.a * circle1.pos.x() + tg.b * circle1.pos.y();
} }
Ok(tgs) Ok(tgs)
} }
fn cast_point_to_canonical_line(pt: Point, line: NormalLine) -> Point { fn cast_point_to_canonical_line(pt: Point, line: LineInGeneralForm) -> Point {
( (
(line.y * (line.y * pt.x() - line.x * pt.y()) - line.x * line.offset) (line.b * (line.b * pt.x() - line.a * pt.y()) - line.a * line.c)
/ (line.x * line.x + line.y * line.y), / (line.a * line.a + line.b * line.b),
(line.x * (-line.y * pt.x() + line.x * pt.y()) - line.y * line.offset) (line.a * (-line.b * pt.x() + line.a * pt.y()) - line.b * line.c)
/ (line.x * line.x + line.y * line.y), / (line.a * line.a + line.b * line.b),
) )
.into() .into()
} }