essence-os/kernel/scheduler.cpp

1396 lines
48 KiB
C++

// This file is part of the Essence operating system.
// It is released under the terms of the MIT license -- see LICENSE.md.
// Written by: nakst.
// TODO Review vforking interaction from the POSIX subsystem with the process termination algorithm.
// TODO Simplify or remove asynchronous task thread semantics.
// TODO Break up or remove dispatchSpinlock.
// How thread termination works:
// 1. ThreadTerminate
// - terminating is set to true.
// - If the thread is executing, then on the next context switch, ThreadKill is called on a async task.
// - If it is not executing, ThreadKill is called on a async task.
// - Note, terminatableState must be set to THREAD_TERMINATABLE.
// - When a thread terminates itself, its terminatableState is automatically set to THREAD_TERMINATABLE.
// 2. ThreadKill
// - Removes the thread from the lists, frees the stacks, and sets killedEvent.
// - The thread's handles to itself and its process are closed.
// - If this is the last thread in the process, ProcessKill is called.
// 3. CloseHandleToObject KERNEL_OBJECT_THREAD
// - If the last handle to the thread has been closed, then ThreadRemove is called.
// 4. ThreadRemove
// - The thread structure is deallocated.
// How process termination works:
// 1. ProcessTerminate (optional)
// - preventNewThreads is set to true.
// - ThreadTerminate is called on each thread, leading to an eventual call to ProcessKill.
// - This is optional because ProcessKill is called if all threads get terminated naturally; in this case, preventNewThreads is never set.
// 2. ProcessKill
// - Removes the process from the lists, destroys the handle table and memory space, and sets killedEvent.
// - Sends a message to Desktop informing it the process was killed.
// - Since ProcessKill is only called from ThreadKill, there is an associated closing of a process handle from the killed thread.
// 3. CloseHandleToObject KERNEL_OBJECT_PROCESS
// - If the last handle to the process has been closed, then ProcessRemove is called.
// 4. ProcessRemove
// - Destroys the message queue, and closes the handle to the executable node.
// - The process and memory space structures are deallocated.
#ifndef IMPLEMENTATION
#define THREAD_PRIORITY_NORMAL (0) // Lower value = higher priority.
#define THREAD_PRIORITY_LOW (1)
#define THREAD_PRIORITY_COUNT (2)
enum ThreadState : int8_t {
THREAD_ACTIVE, // An active thread. Not necessarily executing; `executing` determines if it executing.
THREAD_WAITING_MUTEX, // Waiting for a mutex to be released.
THREAD_WAITING_EVENT, // Waiting for a event to be notified.
THREAD_WAITING_WRITER_LOCK, // Waiting for a writer lock to be notified.
THREAD_TERMINATED, // The thread has been terminated. It will be deallocated when all handles are closed.
};
enum ThreadType : int8_t {
THREAD_NORMAL, // A normal thread.
THREAD_IDLE, // The CPU's idle thread.
THREAD_ASYNC_TASK, // A thread that processes the CPU's asynchronous tasks.
};
enum ThreadTerminatableState : int8_t {
THREAD_INVALID_TS,
THREAD_TERMINATABLE, // The thread is currently executing user code.
THREAD_IN_SYSCALL, // The thread is currently executing kernel code from a system call.
// It cannot be terminated/paused until it returns from the system call.
THREAD_USER_BLOCK_REQUEST, // The thread is sleeping because of a user system call to sleep.
// It can be unblocked, and then terminated when it returns from the system call.
};
struct Thread {
// ** Must be the first item in the structure; see MMArchSafeCopy. **
bool inSafeCopy;
LinkedItem<Thread> item; // Entry in relevent thread queue or blockedThreads list for mutexes/writer locks.
LinkedItem<Thread> allItem; // Entry in the allThreads list.
LinkedItem<Thread> processItem; // Entry in the process's list of threads.
struct Process *process;
EsObjectID id;
volatile uintptr_t cpuTimeSlices;
volatile size_t handles;
uint32_t executingProcessorID;
uintptr_t userStackBase;
uintptr_t kernelStackBase;
uintptr_t kernelStack;
size_t userStackReserve;
volatile size_t userStackCommit;
uintptr_t tlsAddress;
uintptr_t timerAdjustAddress;
uint64_t timerAdjustTicks;
uint64_t lastInterruptTimeStamp;
ThreadType type;
bool isKernelThread, isPageGenerator;
int8_t priority;
int32_t blockedThreadPriorities[THREAD_PRIORITY_COUNT]; // The number of threads blocking on this thread at each priority level.
volatile ThreadState state;
volatile ThreadTerminatableState terminatableState;
volatile bool executing;
volatile bool terminating; // Set when a request to terminate the thread has been registered.
volatile bool paused; // Set to pause a thread. Paused threads are not executed (unless the terminatableState prevents that).
volatile bool receivedYieldIPI; // Used to terminate a thread executing on a different processor.
union {
KMutex *volatile mutex;
struct {
KWriterLock *volatile writerLock;
bool writerLockType;
};
struct {
LinkedItem<Thread> *eventItems; // Entries in the blockedThreads lists (one per event).
KEvent *volatile events[ES_MAX_WAIT_COUNT];
volatile size_t eventCount;
};
} blocking;
KEvent killedEvent;
KAsyncTask killAsyncTask;
// If the type of the thread is THREAD_ASYNC_TASK,
// then this is the virtual address space that should be loaded
// when the task is being executed.
MMSpace *volatile temporaryAddressSpace;
InterruptContext *interruptContext; // TODO Store the userland interrupt context instead?
uintptr_t lastKnownExecutionAddress; // For debugging.
#ifdef ENABLE_POSIX_SUBSYSTEM
struct POSIXThread *posixData;
#endif
const char *cName;
};
enum ProcessType {
PROCESS_NORMAL,
PROCESS_KERNEL,
PROCESS_DESKTOP,
};
struct Process {
MMSpace *vmm;
HandleTable handleTable;
MessageQueue messageQueue;
LinkedList<Thread> threads;
KMutex threadsMutex;
// Creation information:
KNode *executableNode;
char cExecutableName[ES_SNAPSHOT_MAX_PROCESS_NAME_LENGTH + 1];
EsProcessCreateData data;
uint64_t permissions;
uint32_t creationFlags;
ProcessType type;
// Object management:
EsObjectID id;
volatile size_t handles;
LinkedItem<Process> allItem;
// Crashing:
KMutex crashMutex;
EsCrashReason crashReason;
bool crashed;
#ifdef PAUSE_ON_USERLAND_CRASH
// To allow for better remote debugging if PAUSE_ON_USERLAND_CRASH is defined,
// when a process crashes it will return to where the crash occurred and enter an infinite loop.
bool pausedFromCrash;
#endif
// Termination:
bool allThreadsTerminated;
bool blockShutdown;
bool preventNewThreads; // Set by ProcessTerminate.
int exitStatus; // TODO Remove this.
KEvent killedEvent;
// Executable state:
uint8_t executableState;
bool executableStartRequest;
KEvent executableLoadAttemptComplete;
Thread *executableMainThread;
// Statistics:
uintptr_t cpuTimeSlices, idleTimeSlices;
// POSIX:
#ifdef ENABLE_POSIX_SUBSYSTEM
bool posixForking;
int pgid;
#endif
};
struct Scheduler {
void Yield(InterruptContext *context);
void CreateProcessorThreads(CPULocalStorage *local);
void AddActiveThread(Thread *thread, bool start /* put it at the start of the active list */); // Add an active thread into the queue.
void MaybeUpdateActiveList(Thread *thread); // After changing the priority of a thread, call this to move it to the correct active thread queue if needed.
void NotifyObject(LinkedList<Thread> *blockedThreads, bool unblockAll, Thread *previousMutexOwner = nullptr);
void UnblockThread(Thread *unblockedThread, Thread *previousMutexOwner = nullptr);
Thread *PickThread(CPULocalStorage *local); // Pick the next thread to execute.
int8_t GetThreadEffectivePriority(Thread *thread);
KSpinlock dispatchSpinlock; // For accessing synchronisation objects, thread states, scheduling lists, etc. TODO Break this up!
KSpinlock activeTimersSpinlock; // For accessing the activeTimers lists.
LinkedList<Thread> activeThreads[THREAD_PRIORITY_COUNT];
LinkedList<Thread> pausedThreads;
LinkedList<KTimer> activeTimers;
KMutex allThreadsMutex; // For accessing the allThreads list.
KMutex allProcessesMutex; // For accessing the allProcesses list.
KSpinlock asyncTaskSpinlock; // For accessing the per-CPU asyncTaskList.
LinkedList<Thread> allThreads;
LinkedList<Process> allProcesses;
Pool threadPool, processPool, mmSpacePool;
EsObjectID nextThreadID, nextProcessID, nextProcessorID;
KEvent allProcessesTerminatedEvent; // Set during shutdown when all processes have been terminated.
volatile uintptr_t blockShutdownProcessCount;
volatile size_t activeProcessCount;
volatile bool started, panic, shutdown;
uint64_t timeMs;
#ifdef DEBUG_BUILD
EsThreadEventLogEntry *volatile threadEventLog;
volatile uintptr_t threadEventLogPosition;
volatile size_t threadEventLogAllocated;
#endif
};
Process *ProcessSpawn(ProcessType processType);
void ProcessRemove(Process *process);
void ProcessTerminate(Process *process, int status);
void ThreadRemove(Thread *thread);
void ThreadTerminate(Thread *thread);
void ThreadSetTemporaryAddressSpace(MMSpace *space);
#define SPAWN_THREAD_USERLAND (1 << 0)
#define SPAWN_THREAD_LOW_PRIORITY (1 << 1)
#define SPAWN_THREAD_PAUSED (1 << 2)
#define SPAWN_THREAD_ASYNC_TASK (1 << 3)
#define SPAWN_THREAD_IDLE (1 << 4)
Thread *ThreadSpawn(const char *cName, uintptr_t startAddress, uintptr_t argument1 = 0,
uint32_t flags = ES_FLAGS_DEFAULT, Process *process = nullptr, uintptr_t argument2 = 0);
bool DesktopSendMessage(_EsMessageWithObject *message);
EsHandle DesktopOpenHandle(void *object, uint32_t flags, KernelObjectType type);
void DesktopCloseHandle(EsHandle handle);
Process _kernelProcess;
Process *kernelProcess = &_kernelProcess;
Process *desktopProcess;
KMutex desktopMutex;
Scheduler scheduler;
#endif
#ifdef IMPLEMENTATION
void KRegisterAsyncTask(KAsyncTask *task, KAsyncTaskCallback callback) {
KSpinlockAcquire(&scheduler.asyncTaskSpinlock);
if (!task->callback) {
task->callback = callback;
GetLocalStorage()->asyncTaskList.Insert(&task->item, false);
}
KSpinlockRelease(&scheduler.asyncTaskSpinlock);
}
int8_t Scheduler::GetThreadEffectivePriority(Thread *thread) {
KSpinlockAssertLocked(&dispatchSpinlock);
for (int8_t i = 0; i < thread->priority; i++) {
if (thread->blockedThreadPriorities[i]) {
// A thread is blocking on a resource owned by this thread,
// and the blocking thread has a higher priority than this thread.
// Therefore, this thread should assume that higher priority,
// until it releases the resource.
return i;
}
}
return thread->priority;
}
void Scheduler::AddActiveThread(Thread *thread, bool start) {
if (thread->type == THREAD_ASYNC_TASK) {
// An asynchronous task thread was unblocked.
// It will be run immediately, so there's no need to add it to the active thread list.
return;
}
KSpinlockAssertLocked(&dispatchSpinlock);
if (thread->state != THREAD_ACTIVE) {
KernelPanic("Scheduler::AddActiveThread - Thread %d not active\n", thread->id);
} else if (thread->executing) {
KernelPanic("Scheduler::AddActiveThread - Thread %d executing\n", thread->id);
} else if (thread->type != THREAD_NORMAL) {
KernelPanic("Scheduler::AddActiveThread - Thread %d has type %d\n", thread->id, thread->type);
} else if (thread->item.list) {
KernelPanic("Scheduler::AddActiveThread - Thread %d is already in queue %x.\n", thread->id, thread->item.list);
}
if (thread->paused && thread->terminatableState == THREAD_TERMINATABLE) {
// The thread is paused, so we can put it into the paused queue until it is resumed.
pausedThreads.InsertStart(&thread->item);
} else {
int8_t effectivePriority = GetThreadEffectivePriority(thread);
if (start) {
activeThreads[effectivePriority].InsertStart(&thread->item);
} else {
activeThreads[effectivePriority].InsertEnd(&thread->item);
}
}
}
void Scheduler::MaybeUpdateActiveList(Thread *thread) {
// TODO Is this correct with regards to paused threads?
if (thread->type == THREAD_ASYNC_TASK) {
// Asynchronous task threads do not go in the activeThreads lists.
return;
}
if (thread->type != THREAD_NORMAL) {
KernelPanic("Scheduler::MaybeUpdateActiveList - Trying to update the active list of a non-normal thread %x.\n", thread);
}
KSpinlockAssertLocked(&dispatchSpinlock);
if (thread->state != THREAD_ACTIVE || thread->executing) {
// The thread is not currently in an active list,
// so it'll end up in the correct activeThreads list when it becomes active.
return;
}
if (!thread->item.list) {
KernelPanic("Scheduler::MaybeUpdateActiveList - Despite thread %x being active and not executing, it is not in an activeThreads lists.\n", thread);
}
int8_t effectivePriority = GetThreadEffectivePriority(thread);
if (&activeThreads[effectivePriority] == thread->item.list) {
// The thread's effective priority has not changed.
// We don't need to do anything.
return;
}
// Remove the thread from its previous active list.
thread->item.RemoveFromList();
// Add it to the start of its new active list.
// TODO I'm not 100% sure we want to always put it at the start.
activeThreads[effectivePriority].InsertStart(&thread->item);
}
Thread *ThreadSpawn(const char *cName, uintptr_t startAddress, uintptr_t argument1, uint32_t flags, Process *process, uintptr_t argument2) {
bool userland = flags & SPAWN_THREAD_USERLAND;
Thread *parentThread = GetCurrentThread();
if (!process) {
process = kernelProcess;
}
if (userland && process == kernelProcess) {
KernelPanic("ThreadSpawn - Cannot add userland thread to kernel process.\n");
}
// Adding the thread to the owner's list of threads and adding the thread to a scheduling list
// need to be done in the same atomic block.
KMutexAcquire(&process->threadsMutex);
EsDefer(KMutexRelease(&process->threadsMutex));
if (process->preventNewThreads) {
return nullptr;
}
Thread *thread = (Thread *) scheduler.threadPool.Add(sizeof(Thread));
if (!thread) return nullptr;
KernelLog(LOG_INFO, "Scheduler", "spawn thread", "Created thread, %x to start at %x\n", thread, startAddress);
// Allocate the thread's stacks.
#if defined(ES_BITS_64)
uintptr_t kernelStackSize = 0x5000 /* 20KB */;
#elif defined(ES_BITS_32)
uintptr_t kernelStackSize = 0x4000 /* 16KB */;
#endif
uintptr_t userStackReserve = userland ? 0x400000 /* 4MB */ : kernelStackSize;
uintptr_t userStackCommit = userland ? 0x10000 /* 64KB */ : 0;
uintptr_t stack = 0, kernelStack = 0;
if (flags & SPAWN_THREAD_IDLE) goto skipStackAllocation;
kernelStack = (uintptr_t) MMStandardAllocate(kernelMMSpace, kernelStackSize, MM_REGION_FIXED);
if (!kernelStack) goto fail;
if (userland) {
stack = (uintptr_t) MMStandardAllocate(process->vmm, userStackReserve, ES_FLAGS_DEFAULT, nullptr, false);
MMRegion *region = MMFindAndPinRegion(process->vmm, stack, userStackReserve);
KMutexAcquire(&process->vmm->reserveMutex);
#ifdef K_ARCH_STACK_GROWS_DOWN
bool success = MMCommitRange(process->vmm, region, (userStackReserve - userStackCommit) / K_PAGE_SIZE, userStackCommit / K_PAGE_SIZE);
#else
bool success = MMCommitRange(process->vmm, region, 0, userStackCommit / K_PAGE_SIZE);
#endif
KMutexRelease(&process->vmm->reserveMutex);
MMUnpinRegion(process->vmm, region);
if (!success) goto fail;
} else {
stack = kernelStack;
}
if (!stack) goto fail;
skipStackAllocation:;
// If ProcessPause is called while a thread in that process is spawning a new thread, mark the thread as paused.
// This is synchronized under the threadsMutex.
thread->paused = (parentThread && process == parentThread->process && parentThread->paused) || (flags & SPAWN_THREAD_PAUSED);
// 2 handles to the thread:
// One for spawning the thread,
// and the other for remaining during the thread's life.
thread->handles = 2;
thread->isKernelThread = !userland;
thread->priority = (flags & SPAWN_THREAD_LOW_PRIORITY) ? THREAD_PRIORITY_LOW : THREAD_PRIORITY_NORMAL;
thread->cName = cName;
thread->kernelStackBase = kernelStack;
thread->userStackBase = userland ? stack : 0;
thread->userStackReserve = userStackReserve;
thread->userStackCommit = userStackCommit;
thread->terminatableState = userland ? THREAD_TERMINATABLE : THREAD_IN_SYSCALL;
thread->type = (flags & SPAWN_THREAD_ASYNC_TASK) ? THREAD_ASYNC_TASK : (flags & SPAWN_THREAD_IDLE) ? THREAD_IDLE : THREAD_NORMAL;
thread->id = __sync_fetch_and_add(&scheduler.nextThreadID, 1);
thread->process = process;
thread->item.thisItem = thread;
thread->allItem.thisItem = thread;
thread->processItem.thisItem = thread;
if (thread->type != THREAD_IDLE) {
thread->interruptContext = ArchInitialiseThread(kernelStack, kernelStackSize, thread,
startAddress, argument1, argument2, userland, stack, userStackReserve);
} else {
thread->state = THREAD_ACTIVE;
thread->executing = true;
}
process->threads.InsertEnd(&thread->processItem);
KMutexAcquire(&scheduler.allThreadsMutex);
scheduler.allThreads.InsertStart(&thread->allItem);
KMutexRelease(&scheduler.allThreadsMutex);
// Each thread owns a handles to the owner process.
// This makes sure the process isn't destroyed before all its threads have been destroyed.
OpenHandleToObject(process, KERNEL_OBJECT_PROCESS, ES_FLAGS_DEFAULT);
KernelLog(LOG_INFO, "Scheduler", "thread stacks", "Spawning thread with stacks (k,u): %x->%x, %x->%x\n",
kernelStack, kernelStack + kernelStackSize, stack, stack + userStackReserve);
KernelLog(LOG_INFO, "Scheduler", "create thread", "Create thread ID %d, type %d, owner process %d\n",
thread->id, thread->type, process->id);
if (thread->type == THREAD_NORMAL) {
// Add the thread to the start of the active thread list to make sure that it runs immediately.
KSpinlockAcquire(&scheduler.dispatchSpinlock);
scheduler.AddActiveThread(thread, true);
KSpinlockRelease(&scheduler.dispatchSpinlock);
} else {
// Idle and asynchronous task threads don't need to be added to a scheduling list.
}
// The thread may now be terminated at any moment.
return thread;
fail:;
if (stack) MMFree(process->vmm, (void *) stack);
if (kernelStack) MMFree(kernelMMSpace, (void *) kernelStack);
scheduler.threadPool.Remove(thread);
return nullptr;
}
void ProcessKill(Process *process) {
// This function should only be called by ThreadKill, when the last thread in the process exits.
// There should be at least one remaining handle to the process here, owned by that thread.
// It will be closed at the end of the ThreadKill function.
if (!process->handles) {
KernelPanic("ProcessKill - Process %x is on the allProcesses list but there are no handles to it.\n", process);
}
KernelLog(LOG_INFO, "Scheduler", "killing process", "Killing process (%d) %x...\n", process->id, process);
__sync_fetch_and_sub(&scheduler.activeProcessCount, 1);
// Remove the process from the list of processes.
KMutexAcquire(&scheduler.allProcessesMutex);
scheduler.allProcesses.Remove(&process->allItem);
if (pmm.nextProcessToBalance == process) {
// If the balance thread got interrupted while balancing this process,
// start at the beginning of the next process.
pmm.nextProcessToBalance = process->allItem.nextItem ? process->allItem.nextItem->thisItem : nullptr;
pmm.nextRegionToBalance = nullptr;
pmm.balanceResumePosition = 0;
}
KMutexRelease(&scheduler.allProcessesMutex);
KSpinlockAcquire(&scheduler.dispatchSpinlock);
process->allThreadsTerminated = true;
bool setProcessKilledEvent = true;
#ifdef ENABLE_POSIX_SUBSYSTEM
if (process->posixForking) {
// If the process is from an incomplete vfork(),
// then the parent process gets to set the killed event
// and the exit status.
setProcessKilledEvent = false;
}
#endif
KSpinlockRelease(&scheduler.dispatchSpinlock);
if (setProcessKilledEvent) {
// We can now also set the killed event on the process.
KEventSet(&process->killedEvent, true);
}
// There are no threads left in this process.
// We should destroy the handle table at this point.
// Otherwise, the process might never be freed
// because of a cyclic-dependency.
process->handleTable.Destroy();
// Destroy the virtual memory space.
// Don't actually deallocate it yet though; that is done on an async task queued by ProcessRemove.
// This must be destroyed after the handle table!
MMSpaceDestroy(process->vmm);
}
void ThreadKill(KAsyncTask *task) {
Thread *thread = EsContainerOf(Thread, killAsyncTask, task);
ThreadSetTemporaryAddressSpace(thread->process->vmm);
KMutexAcquire(&scheduler.allThreadsMutex);
scheduler.allThreads.Remove(&thread->allItem);
KMutexRelease(&scheduler.allThreadsMutex);
KMutexAcquire(&thread->process->threadsMutex);
thread->process->threads.Remove(&thread->processItem);
bool lastThread = thread->process->threads.count == 0;
KMutexRelease(&thread->process->threadsMutex);
KernelLog(LOG_INFO, "Scheduler", "killing thread",
"Killing thread (ID %d, %d remain in process %d) %x...\n", thread->id, thread->process->threads.count, thread->process->id, thread);
if (lastThread) {
ProcessKill(thread->process);
}
MMFree(kernelMMSpace, (void *) thread->kernelStackBase);
if (thread->userStackBase) MMFree(thread->process->vmm, (void *) thread->userStackBase);
KEventSet(&thread->killedEvent);
// Close the handle that this thread owns of its owner process, and the handle it owns of itself.
CloseHandleToObject(thread->process, KERNEL_OBJECT_PROCESS);
CloseHandleToObject(thread, KERNEL_OBJECT_THREAD);
}
void ProcessTerminate(Process *process, int status) {
KMutexAcquire(&process->threadsMutex);
KernelLog(LOG_INFO, "Scheduler", "terminate process", "Terminating process %d '%z' with status %i...\n",
process->id, process->cExecutableName, status);
process->exitStatus = status;
process->preventNewThreads = true;
Thread *currentThread = GetCurrentThread();
bool isCurrentProcess = process == currentThread->process;
bool foundCurrentThread = false;
LinkedItem<Thread> *thread = process->threads.firstItem;
while (thread) {
Thread *threadObject = thread->thisItem;
thread = thread->nextItem;
if (threadObject != currentThread) {
ThreadTerminate(threadObject);
} else if (isCurrentProcess) {
foundCurrentThread = true;
} else {
KernelPanic("Scheduler::ProcessTerminate - Found current thread in the wrong process?!\n");
}
}
KMutexRelease(&process->threadsMutex);
if (!foundCurrentThread && isCurrentProcess) {
KernelPanic("Scheduler::ProcessTerminate - Could not find current thread in the current process?!\n");
} else if (isCurrentProcess) {
// This doesn't return.
ThreadTerminate(currentThread);
}
}
void ThreadTerminate(Thread *thread) {
// Overview:
// Set terminating true, and paused false.
// Is this the current thread?
// Mark as terminatable, then yield.
// Else, is thread->terminating not set?
// Set thread->terminating.
//
// Is this the current thread?
// Mark as terminatable, then yield.
// Else, are we executing user code?
// If we aren't currently executing the thread, remove the thread from its scheduling queue and kill it.
// Else, is the user waiting on a mutex/event?
// If we aren't currently executing the thread, unblock the thread.
KSpinlockAcquire(&scheduler.dispatchSpinlock);
bool yield = false;
if (thread->terminating) {
KernelLog(LOG_INFO, "Scheduler", "thread already terminating", "Already terminating thread %d.\n", thread->id);
if (thread == GetCurrentThread()) goto terminateThisThread;
else goto done;
}
KernelLog(LOG_INFO, "Scheduler", "terminate thread", "Terminating thread %d...\n", thread->id);
thread->terminating = true;
thread->paused = false;
if (thread == GetCurrentThread()) {
terminateThisThread:;
// Mark the thread as terminatable.
thread->terminatableState = THREAD_TERMINATABLE;
KSpinlockRelease(&scheduler.dispatchSpinlock);
// We cannot return to the previous function as it expects to be killed.
ProcessorFakeTimerInterrupt();
KernelPanic("Scheduler::ThreadTerminate - ProcessorFakeTimerInterrupt returned.\n");
} else {
if (thread->terminatableState == THREAD_TERMINATABLE) {
// We're in user code..
if (thread->executing) {
// The thread is executing, so the next time it tries to make a system call or
// is pre-empted, it will be terminated.
} else {
if (thread->state != THREAD_ACTIVE) {
KernelPanic("Scheduler::ThreadTerminate - Terminatable thread non-active.\n");
}
// The thread is terminatable and it isn't executing.
// Remove it from its queue, and then remove the thread.
thread->item.RemoveFromList();
KRegisterAsyncTask(&thread->killAsyncTask, ThreadKill);
yield = true;
}
} else if (thread->terminatableState == THREAD_USER_BLOCK_REQUEST) {
// We're in the kernel, but because the user wanted to block on a mutex/event.
if (thread->executing) {
// The mutex and event waiting code is designed to recognise when a thread is in this state,
// and exit to the system call handler immediately.
// If the thread however is pre-empted while in a blocked state before this code can execute,
// Scheduler::Yield will automatically force the thread to be active again.
} else {
// Unblock the thread.
// See comment above.
if (thread->state == THREAD_WAITING_MUTEX || thread->state == THREAD_WAITING_EVENT) {
scheduler.UnblockThread(thread);
}
}
} else {
// The thread is executing kernel code.
// Therefore, we can't simply terminate the thread.
// The thread will set its state to THREAD_TERMINATABLE whenever it can be terminated.
}
}
done:;
KSpinlockRelease(&scheduler.dispatchSpinlock);
if (yield) ProcessorFakeTimerInterrupt(); // Process the asynchronous task.
}
void ProcessLoadExecutable() {
Process *thisProcess = GetCurrentThread()->process;
KernelLog(LOG_INFO, "Scheduler", "new process",
"New process %d %x, '%z'.\n", thisProcess->id, thisProcess, thisProcess->cExecutableName);
KLoadedExecutable api = {};
api.isDesktop = true;
EsError loadError = ES_SUCCESS;
{
uint64_t fileFlags = ES_FILE_READ | ES_NODE_FAIL_IF_NOT_FOUND;
KNodeInformation node = FSNodeOpen(EsLiteral(K_DESKTOP_EXECUTABLE), fileFlags);
loadError = node.error;
if (node.error == ES_SUCCESS) {
if (node.node->directoryEntry->type != ES_NODE_FILE) {
loadError = ES_ERROR_INCORRECT_NODE_TYPE;
} else {
loadError = KLoadELF(node.node, &api);
}
CloseHandleToObject(node.node, KERNEL_OBJECT_NODE, fileFlags);
} else {
KernelLog(LOG_ERROR, "Scheduler", "desktop executable open error", "The Desktop executable could not be opened.\n");
}
}
KLoadedExecutable application = {};
if (thisProcess->type != PROCESS_DESKTOP && loadError == ES_SUCCESS) {
loadError = KLoadELF(thisProcess->executableNode, &application);
if (loadError != ES_SUCCESS) {
KernelLog(LOG_ERROR, "Scheduler", "executable load error", "The executable could not be loaded by the ELF loader.\n");
}
}
bool success = loadError == ES_SUCCESS;
if (success) {
// We "link" the API by putting its table of function pointers at a known address.
// TODO Write protection.
if (!MMMapShared(thisProcess->vmm, mmAPITableRegion, 0, mmAPITableRegion->sizeBytes, ES_FLAGS_DEFAULT, ES_API_BASE)) {
success = false;
KernelLog(LOG_ERROR, "Scheduler", "executable load error", "The API table could not be mapped.\n");
}
}
EsProcessStartupInformation *startupInformation;
if (success) {
startupInformation = (EsProcessStartupInformation *) MMStandardAllocate(
thisProcess->vmm, sizeof(EsProcessStartupInformation), ES_FLAGS_DEFAULT);
if (!startupInformation) {
success = false;
KernelLog(LOG_ERROR, "Scheduler", "executable load error", "The process startup information could not be allocated.\n");
} else {
startupInformation->isDesktop = thisProcess->type == PROCESS_DESKTOP;
startupInformation->isBundle = application.isBundle;
startupInformation->applicationStartAddress = application.startAddress;
startupInformation->tlsImageStart = application.tlsImageStart;
startupInformation->tlsImageBytes = application.tlsImageBytes;
startupInformation->tlsBytes = application.tlsBytes;
startupInformation->timeStampTicksPerMs = timeStampTicksPerMs;
uint32_t globalDataRegionFlags = thisProcess->type == PROCESS_DESKTOP ? ES_SHARED_MEMORY_READ_WRITE : ES_FLAGS_DEFAULT;
if (OpenHandleToObject(mmGlobalDataRegion, KERNEL_OBJECT_SHMEM, globalDataRegionFlags)) {
startupInformation->globalDataRegion = thisProcess->handleTable.OpenHandle(mmGlobalDataRegion, globalDataRegionFlags, KERNEL_OBJECT_SHMEM);
}
EsMemoryCopy(&startupInformation->data, &thisProcess->data, sizeof(EsProcessCreateData));
}
}
if (success) {
uint64_t threadFlags = SPAWN_THREAD_USERLAND;
if (thisProcess->creationFlags & ES_PROCESS_CREATE_PAUSED) threadFlags |= SPAWN_THREAD_PAUSED;
thisProcess->executableState = ES_PROCESS_EXECUTABLE_LOADED;
thisProcess->executableMainThread = ThreadSpawn("MainThread", api.startAddress,
(uintptr_t) startupInformation, threadFlags, thisProcess);
if (!thisProcess->executableMainThread) {
success = false;
KernelLog(LOG_ERROR, "Scheduler", "executable load error", "The main thread could not be spawned.\n");
}
}
if (!success) {
if (thisProcess->type != PROCESS_NORMAL) {
KernelPanic("ProcessLoadExecutable - Failed to start the critical process %z.\n", thisProcess->cExecutableName);
}
thisProcess->executableState = ES_PROCESS_EXECUTABLE_FAILED_TO_LOAD;
}
KEventSet(&thisProcess->executableLoadAttemptComplete);
}
bool ProcessStartWithNode(Process *process, KNode *node) {
// Make sure nobody has tried to start the process.
KSpinlockAcquire(&scheduler.dispatchSpinlock);
if (process->executableStartRequest) {
KSpinlockRelease(&scheduler.dispatchSpinlock);
return false;
}
process->executableStartRequest = true;
KSpinlockRelease(&scheduler.dispatchSpinlock);
// Get the name of the process from the node.
KWriterLockTake(&node->writerLock, K_LOCK_SHARED);
size_t byteCount = node->directoryEntry->item.key.longKeyBytes;
if (byteCount > ES_SNAPSHOT_MAX_PROCESS_NAME_LENGTH) byteCount = ES_SNAPSHOT_MAX_PROCESS_NAME_LENGTH;
EsMemoryCopy(process->cExecutableName, node->directoryEntry->item.key.longKey, byteCount);
process->cExecutableName[byteCount] = 0;
KWriterLockReturn(&node->writerLock, K_LOCK_SHARED);
// Initialise the memory space.
bool success = MMSpaceInitialise(process->vmm);
if (!success) return false;
// NOTE If you change these flags, make sure to update the flags when the handle is closed!
if (!OpenHandleToObject(node, KERNEL_OBJECT_NODE, ES_FILE_READ)) {
KernelPanic("ProcessStartWithNode - Could not open read handle to node %x.\n", node);
}
if (KEventPoll(&scheduler.allProcessesTerminatedEvent)) {
KernelPanic("ProcessStartWithNode - allProcessesTerminatedEvent was set.\n");
}
process->executableNode = node;
process->blockShutdown = true;
__sync_fetch_and_add(&scheduler.activeProcessCount, 1);
__sync_fetch_and_add(&scheduler.blockShutdownProcessCount, 1);
// Add the process to the list of all processes,
// and spawn the kernel thread to load the executable.
// This is synchronized under allProcessesMutex so that the process can't be terminated or paused
// until loadExecutableThread has been spawned.
KMutexAcquire(&scheduler.allProcessesMutex);
scheduler.allProcesses.InsertEnd(&process->allItem);
Thread *loadExecutableThread = ThreadSpawn("ExecLoad", (uintptr_t) ProcessLoadExecutable, 0, ES_FLAGS_DEFAULT, process);
KMutexRelease(&scheduler.allProcessesMutex);
if (!loadExecutableThread) {
CloseHandleToObject(process, KERNEL_OBJECT_PROCESS);
return false;
}
// Wait for the executable to be loaded.
CloseHandleToObject(loadExecutableThread, KERNEL_OBJECT_THREAD);
KEventWait(&process->executableLoadAttemptComplete, ES_WAIT_NO_TIMEOUT);
if (process->executableState == ES_PROCESS_EXECUTABLE_FAILED_TO_LOAD) {
KernelLog(LOG_ERROR, "Scheduler", "executable load failure", "Executable failed to load.\n");
return false;
}
return true;
}
bool ProcessStart(Process *process, char *imagePath, size_t imagePathLength, KNode *baseDirectory = nullptr) {
uint64_t flags = ES_FILE_READ | ES_NODE_FAIL_IF_NOT_FOUND;
KNodeInformation node = FSNodeOpen(imagePath, imagePathLength, flags, baseDirectory);
bool result = false;
if (!ES_CHECK_ERROR(node.error)) {
if (node.node->directoryEntry->type == ES_NODE_FILE) {
result = ProcessStartWithNode(process, node.node);
}
CloseHandleToObject(node.node, KERNEL_OBJECT_NODE, flags);
}
if (!result && process->type == PROCESS_DESKTOP) {
KernelPanic("ProcessStart - Could not load the desktop executable.\n");
}
return result;
}
Process *ProcessSpawn(ProcessType processType) {
if (scheduler.shutdown) return nullptr;
Process *process = processType == PROCESS_KERNEL ? kernelProcess : (Process *) scheduler.processPool.Add(sizeof(Process));
if (!process) {
return nullptr;
}
process->vmm = processType == PROCESS_KERNEL ? kernelMMSpace : (MMSpace *) scheduler.mmSpacePool.Add(sizeof(MMSpace));
if (!process->vmm) {
scheduler.processPool.Remove(process);
return nullptr;
}
process->id = __sync_fetch_and_add(&scheduler.nextProcessID, 1);
process->vmm->referenceCount = 1;
process->allItem.thisItem = process;
process->handles = 1;
process->handleTable.process = process;
process->permissions = ES_PERMISSION_ALL;
process->type = processType;
if (processType == PROCESS_KERNEL) {
EsCRTstrcpy(process->cExecutableName, "Kernel");
scheduler.allProcesses.InsertEnd(&process->allItem);
}
return process;
}
void ThreadSetTemporaryAddressSpace(MMSpace *space) {
KSpinlockAcquire(&scheduler.dispatchSpinlock);
Thread *thread = GetCurrentThread();
MMSpace *oldSpace = thread->temporaryAddressSpace ?: kernelMMSpace;
thread->temporaryAddressSpace = space;
MMSpace *newSpace = space ?: kernelMMSpace;
MMSpaceOpenReference(newSpace); // Open our reference to the space.
MMSpaceOpenReference(newSpace); // This reference will be closed in PostContextSwitch, simulating the reference opened in Scheduler::Yield.
ProcessorSetAddressSpace(&newSpace->data);
KSpinlockRelease(&scheduler.dispatchSpinlock);
MMSpaceCloseReference(oldSpace); // Close our reference to the space.
MMSpaceCloseReference(oldSpace); // This reference was opened by Scheduler::Yield, and would have been closed in PostContextSwitch.
}
void AsyncTaskThread() {
CPULocalStorage *local = GetLocalStorage();
while (true) {
if (!local->asyncTaskList.first) {
ProcessorFakeTimerInterrupt();
} else {
KSpinlockAcquire(&scheduler.asyncTaskSpinlock);
SimpleList *item = local->asyncTaskList.first;
KAsyncTask *task = EsContainerOf(KAsyncTask, item, item);
KAsyncTaskCallback callback = task->callback;
task->callback = nullptr;
local->inAsyncTask = true;
item->Remove();
KSpinlockRelease(&scheduler.asyncTaskSpinlock);
callback(task); // This may cause the task to be deallocated.
ThreadSetTemporaryAddressSpace(nullptr); // The task may have modified the address space.
local->inAsyncTask = false;
}
}
}
void Scheduler::CreateProcessorThreads(CPULocalStorage *local) {
local->asyncTaskThread = ThreadSpawn("AsyncTasks", (uintptr_t) AsyncTaskThread, 0, SPAWN_THREAD_ASYNC_TASK);
local->currentThread = local->idleThread = ThreadSpawn("Idle", 0, 0, SPAWN_THREAD_IDLE);
local->processorID = __sync_fetch_and_add(&nextProcessorID, 1);
if (local->processorID >= K_MAX_PROCESSORS) {
KernelPanic("Scheduler::CreateProcessorThreads - Maximum processor count (%d) exceeded.\n", local->processorID);
}
}
void ProcessRemove(Process *process) {
KernelLog(LOG_INFO, "Scheduler", "remove process", "Removing process %d.\n", process->id);
if (process->executableNode) {
// Close the handle to the executable node.
CloseHandleToObject(process->executableNode, KERNEL_OBJECT_NODE, ES_FILE_READ);
process->executableNode = nullptr;
}
// Destroy the process's handle table, if it hasn't already been destroyed.
// For most processes, the handle table is destroyed when the last thread terminates.
process->handleTable.Destroy();
// Free all the remaining messages in the message queue.
// This is done after closing all handles, since closing handles can generate messages.
process->messageQueue.messages.Free();
if (process->blockShutdown) {
if (1 == __sync_fetch_and_sub(&scheduler.blockShutdownProcessCount, 1)) {
// If this is the last process to exit, set the allProcessesTerminatedEvent.
KEventSet(&scheduler.allProcessesTerminatedEvent);
}
}
// Free the process.
MMSpaceCloseReference(process->vmm);
scheduler.processPool.Remove(process);
}
void ThreadRemove(Thread *thread) {
KernelLog(LOG_INFO, "Scheduler", "remove thread", "Removing thread %d.\n", thread->id);
// The last handle to the thread has been closed,
// so we can finally deallocate the thread.
#ifdef ENABLE_POSIX_SUBSYSTEM
if (thread->posixData) {
if (thread->posixData->forkStack) {
EsHeapFree(thread->posixData->forkStack, thread->posixData->forkStackSize, K_PAGED);
CloseHandleToObject(thread->posixData->forkProcess, KERNEL_OBJECT_PROCESS);
}
EsHeapFree(thread->posixData, sizeof(POSIXThread), K_PAGED);
}
#endif
scheduler.threadPool.Remove(thread);
}
void ThreadPause(Thread *thread, bool resume) {
KSpinlockAcquire(&scheduler.dispatchSpinlock);
if (thread->paused == !resume) {
return;
}
thread->paused = !resume;
if (!resume && thread->terminatableState == THREAD_TERMINATABLE) {
if (thread->state == THREAD_ACTIVE) {
if (thread->executing) {
if (thread == GetCurrentThread()) {
KSpinlockRelease(&scheduler.dispatchSpinlock);
// Yield.
ProcessorFakeTimerInterrupt();
if (thread->paused) {
KernelPanic("ThreadPause - Current thread incorrectly resumed.\n");
}
} else {
// The thread is executing, but on a different processor.
// Send them an IPI to stop.
ProcessorSendYieldIPI(thread);
// TODO The interrupt context might not be set at this point.
}
} else {
// Remove the thread from the active queue, and put it into the paused queue.
thread->item.RemoveFromList();
scheduler.AddActiveThread(thread, false);
}
} else {
// The thread doesn't need to be in the paused queue as it won't run anyway.
// If it is unblocked, then AddActiveThread will put it into the correct queue.
}
} else if (resume && thread->item.list == &scheduler.pausedThreads) {
// Remove the thread from the paused queue, and put it into the active queue.
scheduler.pausedThreads.Remove(&thread->item);
scheduler.AddActiveThread(thread, false);
}
KSpinlockRelease(&scheduler.dispatchSpinlock);
}
void ProcessPause(Process *process, bool resume) {
KMutexAcquire(&process->threadsMutex);
LinkedItem<Thread> *thread = process->threads.firstItem;
while (thread) {
Thread *threadObject = thread->thisItem;
thread = thread->nextItem;
ThreadPause(threadObject, resume);
}
KMutexRelease(&process->threadsMutex);
}
void ProcessCrash(Process *process, EsCrashReason *crashReason) {
EsAssert(process == GetCurrentThread()->process); // TODO Test this function when crashing other processes!
if (process == kernelProcess) {
KernelPanic("ProcessCrash - Kernel process has crashed (%d).\n", crashReason->errorCode);
}
if (process->type != PROCESS_NORMAL) {
KernelPanic("ProcessCrash - A critical process has crashed (%d).\n", crashReason->errorCode);
}
bool pauseProcess = false;
KMutexAcquire(&process->crashMutex);
if (!process->crashed) {
process->crashed = true;
pauseProcess = true;
KernelLog(LOG_ERROR, "Scheduler", "process crashed", "Process %x has crashed! (%d)\n", process, crashReason->errorCode);
EsMemoryCopy(&process->crashReason, crashReason, sizeof(EsCrashReason));
if (!scheduler.shutdown) {
_EsMessageWithObject m;
EsMemoryZero(&m, sizeof(m));
m.message.type = ES_MSG_APPLICATION_CRASH;
m.message.crash.pid = process->id;
EsMemoryCopy(&m.message.crash.reason, crashReason, sizeof(EsCrashReason));
DesktopSendMessage(&m);
}
}
KMutexRelease(&process->crashMutex);
if (pauseProcess) {
// TODO Shouldn't this be done before sending the desktop message?
ProcessPause(process, false);
}
}
Thread *Scheduler::PickThread(CPULocalStorage *local) {
KSpinlockAssertLocked(&dispatchSpinlock);
if ((local->asyncTaskList.first || local->inAsyncTask) && local->asyncTaskThread->state == THREAD_ACTIVE) {
// If the asynchronous task thread for this processor isn't blocked, and has tasks to process, execute it.
return local->asyncTaskThread;
}
for (int i = 0; i < THREAD_PRIORITY_COUNT; i++) {
// For every priority, check if there is a thread available. If so, execute it.
LinkedItem<Thread> *item = activeThreads[i].firstItem;
if (!item) continue;
item->RemoveFromList();
return item->thisItem;
}
// If we couldn't find a thread to execute, idle.
return local->idleThread;
}
void Scheduler::Yield(InterruptContext *context) {
CPULocalStorage *local = GetLocalStorage();
if (!started || !local || !local->schedulerReady) {
return;
}
if (!local->processorID) {
// Update the scheduler's time.
timeMs = ArchGetTimeMs();
mmGlobalData->schedulerTimeMs = timeMs;
// Notify the necessary timers.
KSpinlockAcquire(&activeTimersSpinlock);
LinkedItem<KTimer> *_timer = activeTimers.firstItem;
while (_timer) {
KTimer *timer = _timer->thisItem;
LinkedItem<KTimer> *next = _timer->nextItem;
if (timer->triggerTimeMs <= timeMs) {
activeTimers.Remove(_timer);
KEventSet(&timer->event);
if (timer->callback) {
KRegisterAsyncTask(&timer->asyncTask, timer->callback);
}
} else {
break; // Timers are kept sorted, so there's no point continuing.
}
_timer = next;
}
KSpinlockRelease(&activeTimersSpinlock);
}
if (local->spinlockCount) {
KernelPanic("Scheduler::Yield - Spinlocks acquired while attempting to yield.\n");
}
ProcessorDisableInterrupts(); // We don't want interrupts to get reenabled after the context switch.
KSpinlockAcquire(&dispatchSpinlock);
if (dispatchSpinlock.interruptsEnabled) {
KernelPanic("Scheduler::Yield - Interrupts were enabled when scheduler lock was acquired.\n");
}
if (!local->currentThread->executing) {
KernelPanic("Scheduler::Yield - Current thread %x marked as not executing (%x).\n", local->currentThread, local);
}
MMSpace *oldAddressSpace = local->currentThread->temporaryAddressSpace ?: local->currentThread->process->vmm;
local->currentThread->interruptContext = context;
local->currentThread->executing = false;
bool killThread = local->currentThread->terminatableState == THREAD_TERMINATABLE
&& local->currentThread->terminating;
bool keepThreadAlive = local->currentThread->terminatableState == THREAD_USER_BLOCK_REQUEST
&& local->currentThread->terminating; // The user can't make the thread block if it is terminating.
if (killThread) {
local->currentThread->state = THREAD_TERMINATED;
KernelLog(LOG_INFO, "Scheduler", "terminate yielded thread", "Terminated yielded thread %x\n", local->currentThread);
KRegisterAsyncTask(&local->currentThread->killAsyncTask, ThreadKill);
}
// If the thread is waiting for an object to be notified, put it in the relevant blockedThreads list.
// But if the object has been notified yet hasn't made itself active yet, do that for it.
else if (local->currentThread->state == THREAD_WAITING_MUTEX) {
KMutex *mutex = local->currentThread->blocking.mutex;
if (!keepThreadAlive && mutex->owner) {
mutex->owner->blockedThreadPriorities[local->currentThread->priority]++;
MaybeUpdateActiveList(mutex->owner);
mutex->blockedThreads.InsertEnd(&local->currentThread->item);
} else {
local->currentThread->state = THREAD_ACTIVE;
}
}
else if (local->currentThread->state == THREAD_WAITING_EVENT) {
if (keepThreadAlive) {
local->currentThread->state = THREAD_ACTIVE;
} else {
bool unblocked = false;
for (uintptr_t i = 0; i < local->currentThread->blocking.eventCount; i++) {
if (local->currentThread->blocking.events[i]->state) {
local->currentThread->state = THREAD_ACTIVE;
unblocked = true;
break;
}
}
if (!unblocked) {
for (uintptr_t i = 0; i < local->currentThread->blocking.eventCount; i++) {
local->currentThread->blocking.events[i]->blockedThreads.InsertEnd(&local->currentThread->blocking.eventItems[i]);
}
}
}
}
else if (local->currentThread->state == THREAD_WAITING_WRITER_LOCK) {
KWriterLock *lock = local->currentThread->blocking.writerLock;
if ((local->currentThread->blocking.writerLockType == K_LOCK_SHARED && lock->state >= 0)
|| (local->currentThread->blocking.writerLockType == K_LOCK_EXCLUSIVE && lock->state == 0)) {
local->currentThread->state = THREAD_ACTIVE;
} else {
local->currentThread->blocking.writerLock->blockedThreads.InsertEnd(&local->currentThread->item);
}
}
// Put the current thread at the end of the activeThreads list.
if (!killThread && local->currentThread->state == THREAD_ACTIVE) {
if (local->currentThread->type == THREAD_NORMAL) {
AddActiveThread(local->currentThread, false);
} else if (local->currentThread->type == THREAD_IDLE || local->currentThread->type == THREAD_ASYNC_TASK) {
// Do nothing.
} else {
KernelPanic("Scheduler::Yield - Unrecognised thread type\n");
}
}
// Get the next thread to execute.
Thread *newThread = local->currentThread = PickThread(local);
if (!newThread) {
KernelPanic("Scheduler::Yield - Could not find a thread to execute.\n");
}
if (newThread->executing) {
KernelPanic("Scheduler::Yield - Thread (ID %d) in active queue already executing with state %d, type %d.\n",
local->currentThread->id, local->currentThread->state, local->currentThread->type);
}
// Store information about the thread.
newThread->executing = true;
newThread->executingProcessorID = local->processorID;
newThread->cpuTimeSlices++;
if (newThread->type == THREAD_IDLE) newThread->process->idleTimeSlices++;
else newThread->process->cpuTimeSlices++;
// Prepare the next timer interrupt.
ArchNextTimer(1 /* ms */);
InterruptContext *newContext = newThread->interruptContext;
MMSpace *addressSpace = newThread->temporaryAddressSpace ?: newThread->process->vmm;
MMSpaceOpenReference(addressSpace);
ArchSwitchContext(newContext, &addressSpace->data, newThread->kernelStack, newThread, oldAddressSpace);
KernelPanic("Scheduler::Yield - DoContextSwitch unexpectedly returned.\n");
}
void ProcessTerminateAll() {
KMutexAcquire(&desktopMutex);
scheduler.shutdown = true;
// Close our handle to the desktop process.
CloseHandleToObject(desktopProcess->executableMainThread, KERNEL_OBJECT_THREAD);
CloseHandleToObject(desktopProcess, KERNEL_OBJECT_PROCESS);
desktopProcess = nullptr;
KMutexRelease(&desktopMutex);
KernelLog(LOG_INFO, "Scheduler", "terminating all processes", "ProcessTerminateAll - Terminating all processes....\n");
while (true) {
KMutexAcquire(&scheduler.allProcessesMutex);
Process *process = scheduler.allProcesses.firstItem->thisItem;
while (process && (process->preventNewThreads || process == kernelProcess)) {
LinkedItem<Process> *item = process->allItem.nextItem;
process = item ? item->thisItem : nullptr;
}
KMutexRelease(&scheduler.allProcessesMutex);
if (!process) break;
ProcessTerminate(process, -1);
}
KEventWait(&scheduler.allProcessesTerminatedEvent);
}
Process *ProcessOpen(uint64_t id) {
KMutexAcquire(&scheduler.allProcessesMutex);
LinkedItem<Process> *item = scheduler.allProcesses.firstItem;
Process *result = nullptr;
while (item) {
Process *process = item->thisItem;
if (process->id == id && process->type != PROCESS_KERNEL /* the kernel process cannot be opened */) {
OpenHandleToObject(process, KERNEL_OBJECT_PROCESS, ES_FLAGS_DEFAULT);
result = item->thisItem;
break;
}
item = item->nextItem;
}
KMutexRelease(&scheduler.allProcessesMutex);
return result;
}
bool KThreadCreate(const char *cName, void (*startAddress)(uintptr_t), uintptr_t argument) {
return ThreadSpawn(cName, (uintptr_t) startAddress, argument) ? true : false;
}
void KThreadTerminate() {
ThreadTerminate(GetCurrentThread());
}
void KYield() {
ProcessorFakeTimerInterrupt();
}
bool DesktopSendMessage(_EsMessageWithObject *message) {
bool result = false;
KMutexAcquire(&desktopMutex);
if (desktopProcess) result = desktopProcess->messageQueue.SendMessage(message);
KMutexRelease(&desktopMutex);
return result;
}
EsHandle DesktopOpenHandle(void *object, uint32_t flags, KernelObjectType type) {
EsHandle result = ES_INVALID_HANDLE;
bool close = false;
KMutexAcquire(&desktopMutex);
if (desktopProcess) result = desktopProcess->handleTable.OpenHandle(object, flags, type);
else close = true;
KMutexRelease(&desktopMutex);
if (close) CloseHandleToObject(object, type, flags);
return result;
}
void DesktopCloseHandle(EsHandle handle) {
KMutexAcquire(&desktopMutex);
if (desktopProcess) desktopProcess->handleTable.CloseHandle(handle); // This will check that the handle is still valid.
KMutexRelease(&desktopMutex);
}
uint64_t KCPUCurrentID() { return GetLocalStorage() ->processorID; }
uint64_t KProcessCurrentID() { return GetCurrentThread()->process->id; }
uint64_t KThreadCurrentID() { return GetCurrentThread() ->id; }
#endif