essence-os/drivers/acpi.cpp

375 lines
12 KiB
C++

// This file is part of the Essence operating system.
// It is released under the terms of the MIT license -- see LICENSE.md.
// Written by: nakst.
#define SIGNATURE_RSDP (0x2052545020445352)
#define SIGNATURE_RSDT (0x54445352)
#define SIGNATURE_XSDT (0x54445358)
#define SIGNATURE_MADT (0x43495041)
#define SIGNATURE_FADT (0x50434146)
#define SIGNATURE_HPET (0x54455048)
struct RootSystemDescriptorPointer {
uint64_t signature;
uint8_t checksum;
char OEMID[6];
uint8_t revision;
uint32_t rsdtAddress;
uint32_t length;
uint64_t xsdtAddress;
uint8_t extendedChecksum;
uint8_t reserved[3];
};
struct ACPIDescriptorTable {
#define ACPI_DESCRIPTOR_TABLE_HEADER_LENGTH (36)
uint32_t signature;
uint32_t length;
uint64_t id;
uint64_t tableID;
uint32_t oemRevision;
uint32_t creatorID;
uint32_t creatorRevision;
};
struct MultipleAPICDescriptionTable {
uint32_t lapicAddress;
uint32_t flags;
};
struct ArchCPU {
uint8_t processorID, kernelProcessorID;
uint8_t apicID;
bool bootProcessor;
void **kernelStack;
CPULocalStorage *local;
};
struct ACPIIoApic {
uint8_t id;
uint32_t volatile *address;
uint32_t gsiBase;
};
struct ACPIInterruptOverride {
uint8_t sourceIRQ;
uint32_t gsiNumber;
bool activeLow, levelTriggered;
};
struct ACPILapicNMI {
uint8_t processor; // 0xFF for all processors
uint8_t lintIndex;
bool activeLow, levelTriggered;
};
struct ACPI {
size_t processorCount;
size_t ioapicCount;
size_t interruptOverrideCount;
size_t lapicNMICount;
ArchCPU processors[256];
ACPIIoApic ioApics[16];
ACPIInterruptOverride interruptOverrides[256];
ACPILapicNMI lapicNMIs[32];
RootSystemDescriptorPointer *rsdp;
ACPIDescriptorTable *madt;
volatile uint32_t *lapicAddress;
size_t lapicTicksPerMs;
bool ps2ControllerUnavailable;
bool vgaControllerUnavailable;
uint8_t centuryRegisterIndex;
volatile uint64_t *hpetBaseAddress;
uint64_t hpetPeriod; // 10^-15 seconds.
KDevice *computer;
};
ACPI acpi;
uint32_t ACPIIoApicReadRegister(ACPIIoApic *apic, uint32_t reg) {
apic->address[0] = reg;
return apic->address[4];
}
void ACPIIoApicWriteRegister(ACPIIoApic *apic, uint32_t reg, uint32_t value) {
apic->address[0] = reg;
apic->address[4] = value;
}
void ACPICheckTable(const ACPIDescriptorTable *table) {
if (!EsMemorySumBytes((uint8_t *) table, table->length)) {
return;
}
KernelPanic("ACPICheckTable - ACPI table with signature %s had invalid checksum: "
"length: %D, ID = %s, table = %s, OEM revision = %d, creator = %s, creator revision = %d.\n",
4, &table->signature, table->length, 8, &table->id, 8, &table->tableID,
table->oemRevision, 4, &table->creatorID, table->creatorRevision);
}
void *ACPIMapPhysicalMemory(uintptr_t physicalAddress, size_t length) {
return MMMapPhysical(kernelMMSpace, physicalAddress, length, MM_REGION_NOT_CACHEABLE);
}
void KPS2SafeToInitialise() {
// This is only called when either:
// - the PCI driver determines there are no USB controllers
// - the USB controller disables USB emulation
// TODO Qemu sets this to true?
#if 0
if (acpi.ps2ControllerUnavailable) {
return;
}
#endif
KThreadCreate("InitPS2", [] (uintptr_t) {
KDeviceAttachByName(acpi.computer, "PS2");
});
}
void *ACPIGetRSDP() {
return acpi.rsdp;
}
uint8_t ACPIGetCenturyRegisterIndex() {
return acpi.centuryRegisterIndex;
}
void ACPIParseTables() {
acpi.rsdp = (RootSystemDescriptorPointer *) MMMapPhysical(kernelMMSpace, ArchFindRootSystemDescriptorPointer(), 16384, ES_FLAGS_DEFAULT);
ACPIDescriptorTable *madtHeader = nullptr;
ACPIDescriptorTable *sdt = nullptr;
bool isXSDT = false;
if (acpi.rsdp) {
if (acpi.rsdp->revision == 2 && acpi.rsdp->xsdtAddress) {
isXSDT = true;
sdt = (ACPIDescriptorTable *) acpi.rsdp->xsdtAddress;
} else {
isXSDT = false;
sdt = (ACPIDescriptorTable *) (uintptr_t) acpi.rsdp->rsdtAddress;
}
sdt = (ACPIDescriptorTable *) MMMapPhysical(kernelMMSpace, (uintptr_t) sdt, 16384, ES_FLAGS_DEFAULT);
} else {
KernelPanic("ACPIInitialise - Could not find supported root system descriptor pointer.\nACPI support is required.\n");
}
if (((sdt->signature == SIGNATURE_XSDT && isXSDT) || (sdt->signature == SIGNATURE_RSDT && !isXSDT))
&& sdt->length < 16384 && !EsMemorySumBytes((uint8_t *) sdt, sdt->length)) {
// The SDT is valid.
} else {
KernelPanic("ACPIInitialise - Could not find a valid or supported system descriptor table.\nACPI support is required.\n");
}
size_t tablesCount = (sdt->length - sizeof(ACPIDescriptorTable)) >> (isXSDT ? 3 : 2);
if (tablesCount < 1) {
KernelPanic("ACPIInitialise - The system descriptor table contains an unsupported number of tables (%d).\n", tablesCount);
}
uintptr_t tableListAddress = (uintptr_t) sdt + ACPI_DESCRIPTOR_TABLE_HEADER_LENGTH;
KernelLog(LOG_INFO, "ACPI", "table count", "ACPIInitialise - Found %d tables.\n", tablesCount);
for (uintptr_t i = 0; i < tablesCount; i++) {
uintptr_t address;
if (isXSDT) {
address = ((uint64_t *) tableListAddress)[i];
} else {
address = ((uint32_t *) tableListAddress)[i];
}
ACPIDescriptorTable *header = (ACPIDescriptorTable *) MMMapPhysical(kernelMMSpace, address, sizeof(ACPIDescriptorTable), ES_FLAGS_DEFAULT);
KernelLog(LOG_INFO, "ACPI", "table enumerated", "ACPIInitialise - Found ACPI table '%s'.\n", 4, &header->signature);
if (header->signature == SIGNATURE_MADT) {
madtHeader = (ACPIDescriptorTable *) MMMapPhysical(kernelMMSpace, address, header->length, ES_FLAGS_DEFAULT);
ACPICheckTable(madtHeader);
} else if (header->signature == SIGNATURE_FADT) {
ACPIDescriptorTable *fadt = (ACPIDescriptorTable *) MMMapPhysical(kernelMMSpace, address, header->length, ES_FLAGS_DEFAULT);
ACPICheckTable(fadt);
if (header->length > 109) {
acpi.centuryRegisterIndex = ((uint8_t *) fadt)[108];
uint8_t bootArchitectureFlags = ((uint8_t *) fadt)[109];
acpi.ps2ControllerUnavailable = ~bootArchitectureFlags & (1 << 1);
acpi.vgaControllerUnavailable = bootArchitectureFlags & (1 << 2);
KernelLog(LOG_INFO, "ACPI", "FADT", "PS/2 controller is %z; VGA controller is %z.\n",
acpi.ps2ControllerUnavailable ? "unavailble" : "present",
acpi.vgaControllerUnavailable ? "unavailble" : "present");
}
MMFree(kernelMMSpace, fadt);
} else if (header->signature == SIGNATURE_HPET) {
ACPIDescriptorTable *hpet = (ACPIDescriptorTable *) MMMapPhysical(kernelMMSpace, address, header->length, ES_FLAGS_DEFAULT);
ACPICheckTable(hpet);
if (header->length > 52 && ((uint8_t *) header)[52] == 0) {
uint64_t baseAddress;
EsMemoryCopy(&baseAddress, (uint8_t *) header + 44, sizeof(uint64_t));
KernelLog(LOG_INFO, "ACPI", "HPET", "Found primary HPET with base address %x.\n", baseAddress);
acpi.hpetBaseAddress = (uint64_t *) MMMapPhysical(kernelMMSpace, baseAddress, 1024, ES_FLAGS_DEFAULT);
if (acpi.hpetBaseAddress) {
acpi.hpetBaseAddress[2] |= 1; // Start the main counter.
acpi.hpetPeriod = acpi.hpetBaseAddress[0] >> 32;
uint8_t revisionID = acpi.hpetBaseAddress[0] & 0xFF;
uint64_t initialCount = acpi.hpetBaseAddress[30];
KernelLog(LOG_INFO, "ACPI", "HPET", "HPET has period of %d fs, revision ID %d, and initial count %d.\n",
acpi.hpetPeriod, revisionID, initialCount);
}
}
MMFree(kernelMMSpace, hpet);
}
MMFree(kernelMMSpace, header);
}
MultipleAPICDescriptionTable *madt = (MultipleAPICDescriptionTable *) ((uint8_t *) madtHeader + ACPI_DESCRIPTOR_TABLE_HEADER_LENGTH);
if (!madt) {
KernelPanic("ACPIInitialise - Could not find the MADT table.\nThis is required to use the APIC.\n");
}
uintptr_t length = madtHeader->length - ACPI_DESCRIPTOR_TABLE_HEADER_LENGTH - sizeof(MultipleAPICDescriptionTable);
uintptr_t startLength = length;
uint8_t *data = (uint8_t *) (madt + 1);
#ifdef ES_ARCH_X86_64
acpi.lapicAddress = (uint32_t volatile *) ACPIMapPhysicalMemory(madt->lapicAddress, 0x10000);
#endif
while (length && length <= startLength) {
uint8_t entryType = data[0];
uint8_t entryLength = data[1];
switch (entryType) {
case 0: {
// A processor and its LAPIC.
if ((data[4] & 1) == 0) goto nextEntry;
ArchCPU *processor = acpi.processors + acpi.processorCount;
processor->processorID = data[2];
processor->apicID = data[3];
acpi.processorCount++;
} break;
case 1: {
// An I/O APIC.
acpi.ioApics[acpi.ioapicCount].id = data[2];
acpi.ioApics[acpi.ioapicCount].address = (uint32_t volatile *) ACPIMapPhysicalMemory(((uint32_t *) data)[1], 0x10000);
ACPIIoApicReadRegister(&acpi.ioApics[acpi.ioapicCount], 0); // Make sure it's mapped.
acpi.ioApics[acpi.ioapicCount].gsiBase = ((uint32_t *) data)[2];
acpi.ioapicCount++;
} break;
case 2: {
// An interrupt source override structure.
acpi.interruptOverrides[acpi.interruptOverrideCount].sourceIRQ = data[3];
acpi.interruptOverrides[acpi.interruptOverrideCount].gsiNumber = ((uint32_t *) data)[1];
acpi.interruptOverrides[acpi.interruptOverrideCount].activeLow = (data[8] & 2) ? true : false;
acpi.interruptOverrides[acpi.interruptOverrideCount].levelTriggered = (data[8] & 8) ? true : false;
KernelLog(LOG_INFO, "ACPI", "interrupt override", "ACPIInitialise - Source IRQ %d is mapped to GSI %d%z%z.\n",
acpi.interruptOverrides[acpi.interruptOverrideCount].sourceIRQ,
acpi.interruptOverrides[acpi.interruptOverrideCount].gsiNumber,
acpi.interruptOverrides[acpi.interruptOverrideCount].activeLow ? ", active low" : ", active high",
acpi.interruptOverrides[acpi.interruptOverrideCount].levelTriggered ? ", level triggered" : ", edge triggered");
acpi.interruptOverrideCount++;
} break;
case 4: {
// A non-maskable interrupt.
acpi.lapicNMIs[acpi.lapicNMICount].processor = data[2];
acpi.lapicNMIs[acpi.lapicNMICount].lintIndex = data[5];
acpi.lapicNMIs[acpi.lapicNMICount].activeLow = (data[3] & 2) ? true : false;
acpi.lapicNMIs[acpi.lapicNMICount].levelTriggered = (data[3] & 8) ? true : false;
acpi.lapicNMICount++;
} break;
default: {
KernelLog(LOG_ERROR, "ACPI", "unrecognised MADT entry", "ACPIInitialise - Found unknown entry of type %d in MADT\n", entryType);
} break;
}
nextEntry:
length -= entryLength;
data += entryLength;
}
if (acpi.processorCount > 256 || acpi.ioapicCount > 16 || acpi.interruptOverrideCount > 256 || acpi.lapicNMICount > 32) {
KernelPanic("ACPIInitialise - Invalid number of processors (%d/%d), \n"
" I/O APICs (%d/%d), interrupt overrides (%d/%d)\n"
" and LAPIC NMIs (%d/%d)\n",
acpi.processorCount, 256, acpi.ioapicCount, 16, acpi.interruptOverrideCount, 256, acpi.lapicNMICount, 32);
}
}
size_t KGetCPUCount() {
return acpi.processorCount;
}
CPULocalStorage *KGetCPULocal(uintptr_t index) {
return acpi.processors[index].local;
}
#ifdef USE_ACPICA
#include "acpica.cpp"
#else
void ArchShutdown() {
if (shutdownAction == ES_SHUTDOWN_ACTION_RESTART) ProcessorReset();
StartDebugOutput();
EsPrint("\nIt's now safe to turn off your computer.\n");
ProcessorDisableInterrupts();
ProcessorHalt();
}
EsError KACPIObjectSetDeviceNotificationHandler(KACPIObject *, KACPINotificationHandler, EsGeneric) {
return ES_ERROR_UNSUPPORTED;
}
EsError KACPIObjectEvaluateInteger(KACPIObject *, const char *, uint64_t *) {
return ES_ERROR_UNSUPPORTED;
}
EsError KACPIObjectEvaluateMethodWithInteger(KACPIObject *, const char *, uint64_t) {
return ES_ERROR_UNSUPPORTED;
}
#endif
void ACPIDeviceAttach(KDevice *parentDevice) {
acpi.computer = KDeviceCreate("ACPI computer", parentDevice, sizeof(KDevice));
KThreadCreate("InitACPI", [] (uintptr_t) {
KDeviceAttachByName(acpi.computer, "RTC");
#ifdef USE_ACPICA
ACPICAInitialise();
#endif
#ifdef USE_SMP
ArchStartupApplicationProcessors();
#endif
});
if (!acpi.vgaControllerUnavailable) {
KDeviceAttachByName(acpi.computer, "SVGA");
}
KDeviceAttachByName(acpi.computer, "PCI");
}
KDriver driverACPI = {
.attach = ACPIDeviceAttach,
};