essence-os/boot/x86/uefi.c

392 lines
12 KiB
C

// This file is part of the Essence operating system.
// It is released under the terms of the MIT license -- see LICENSE.md.
// Written by: nakst.
#include <efi.h>
#define ENTRIES_PER_PAGE_TABLE (512)
#define ENTRIES_PER_PAGE_TABLE_BITS (9)
#define K_PAGE_SIZE (4096)
#define K_PAGE_BITS (12)
typedef struct VideoModeInformation {
uint8_t valid : 1, edidValid : 1;
uint8_t bitsPerPixel;
uint16_t widthPixels, heightPixels;
uint16_t bytesPerScanlineLinear;
uint64_t bufferPhysical;
uint8_t edid[128];
} VideoModeInformation;
typedef struct ElfHeader {
uint32_t magicNumber; // 0x7F followed by 'ELF'
uint8_t bits; // 1 = 32 bit, 2 = 64 bit
uint8_t endianness; // 1 = LE, 2 = BE
uint8_t version1;
uint8_t abi; // 0 = System V
uint8_t _unused0[8];
uint16_t type; // 1 = relocatable, 2 = executable, 3 = shared
uint16_t instructionSet; // 0x03 = x86, 0x28 = ARM, 0x3E = x86-64, 0xB7 = AArch64
uint32_t version2;
uint64_t entry;
uint64_t programHeaderTable;
uint64_t sectionHeaderTable;
uint32_t flags;
uint16_t headerSize;
uint16_t programHeaderEntrySize;
uint16_t programHeaderEntries;
uint16_t sectionHeaderEntrySize;
uint16_t sectionHeaderEntries;
uint16_t sectionNameIndex;
} ElfHeader;
typedef struct ElfSectionHeader {
uint32_t name; // Offset into section header->sectionNameIndex.
uint32_t type; // 4 = rela
uint64_t flags;
uint64_t address;
uint64_t offset;
uint64_t size;
uint32_t link;
uint32_t info;
uint64_t align;
uint64_t entrySize;
} ElfSectionHeader;
typedef struct ElfProgramHeader {
uint32_t type; // 0 = unused, 1 = load, 2 = dynamic, 3 = interp, 4 = note
uint32_t flags; // 1 = executable, 2 = writable, 4 = readable
uint64_t fileOffset;
uint64_t virtualAddress;
uint64_t _unused0;
uint64_t dataInFile;
uint64_t segmentSize;
uint64_t alignment;
} ElfProgramHeader;
typedef struct __attribute__((packed)) GDTData {
uint16_t length;
uint64_t address;
} GDTData;
typedef struct MemoryRegion {
uintptr_t base, pages;
} MemoryRegion;
#define MAX_MEMORY_REGIONS (1024)
MemoryRegion memoryRegions[1024];
#define KERNEL_BUFFER_SIZE (1048576)
#define kernelBuffer ((char *) 0x200000)
#define IID_BUFFER_SIZE (16)
char iidBuffer[IID_BUFFER_SIZE];
#define MEMORY_MAP_BUFFER_SIZE (16384)
char memoryMapBuffer[MEMORY_MAP_BUFFER_SIZE];
EFI_SYSTEM_TABLE *systemTable;
void ZeroMemory(void *pointer, uint64_t size) {
char *d = (char *) pointer;
for (uintptr_t i = 0; i < size; i++) {
d[i] = 0;
}
}
void Print(WCHAR *message) {
uefi_call_wrapper(systemTable->ConOut->OutputString, 2, systemTable->ConOut, message);
}
void Error(WCHAR *message) {
Print(message);
while (1);
}
void PrintHex(uint64_t value) {
const WCHAR *hexChars = L"0123456789ABCDEF";
for (uintptr_t i = 0; i < 16; i++) {
WCHAR b[2] = { hexChars[(value >> (60 - i * 4)) & 0xF], 0 };
Print((WCHAR *) b);
}
Print(L", ");
}
EFI_STATUS EFIAPI efi_main(EFI_HANDLE imageHandle, EFI_SYSTEM_TABLE *_systemTable) {
UINTN mapKey = 0;
systemTable = _systemTable;
uint32_t *framebuffer, horizontalResolution, verticalResolution, pixelsPerScanline;
ElfHeader *header;
// Make sure 0x100000 -> 0x300000 is identity mapped.
{
EFI_PHYSICAL_ADDRESS address = 0x100000;
if (EFI_SUCCESS != uefi_call_wrapper(systemTable->BootServices->AllocatePages, 4, AllocateAddress, EfiLoaderData, 0x200, &address)) {
Error(L"Error: Could not allocate 1MB->3MB.\n");
}
}
// Find the RSDP.
{
uint8_t foundRSDP = 0;
for (uintptr_t i = 0; i < systemTable->NumberOfTableEntries; i++) {
EFI_CONFIGURATION_TABLE *entry = systemTable->ConfigurationTable + i;
if (entry->VendorGuid.Data1 == 0x8868E871 && entry->VendorGuid.Data2 == 0xE4F1 && entry->VendorGuid.Data3 == 0x11D3
&& entry->VendorGuid.Data4[0] == 0xBC && entry->VendorGuid.Data4[1] == 0x22 && entry->VendorGuid.Data4[2] == 0x00
&& entry->VendorGuid.Data4[3] == 0x80 && entry->VendorGuid.Data4[4] == 0xC7 && entry->VendorGuid.Data4[5] == 0x3C
&& entry->VendorGuid.Data4[6] == 0x88 && entry->VendorGuid.Data4[7] == 0x81) {
*((uint64_t *) 0x107FE8) = (uint64_t) entry->VendorTable;
foundRSDP = 1;
break;
}
}
if (!foundRSDP) {
Error(L"Error: Could not find the RSDP.\n");
}
}
// Read the kernel, IID and loader files.
{
EFI_GUID loadedImageProtocolGUID = LOADED_IMAGE_PROTOCOL;
EFI_GUID simpleFilesystemProtocolGUID = SIMPLE_FILE_SYSTEM_PROTOCOL;
EFI_LOADED_IMAGE_PROTOCOL *loadedImageProtocol;
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL *simpleFilesystemProtocol;
EFI_FILE *filesystemRoot, *kernelFile, *iidFile, *loaderFile;
UINTN size;
if (EFI_SUCCESS != uefi_call_wrapper(systemTable->BootServices->OpenProtocol, 6, imageHandle, &loadedImageProtocolGUID,
(void **) &loadedImageProtocol, imageHandle, NULL, EFI_OPEN_PROTOCOL_GET_PROTOCOL)) {
Error(L"Error: Could not open protocol 1.\n");
}
EFI_HANDLE deviceHandle = loadedImageProtocol->DeviceHandle;
if (EFI_SUCCESS != uefi_call_wrapper(systemTable->BootServices->OpenProtocol, 6, deviceHandle, &simpleFilesystemProtocolGUID,
(void **) &simpleFilesystemProtocol, imageHandle, NULL, EFI_OPEN_PROTOCOL_GET_PROTOCOL)) {
Error(L"Error: Could not open procotol 2.\n");
}
if (EFI_SUCCESS != uefi_call_wrapper(simpleFilesystemProtocol->OpenVolume, 2, simpleFilesystemProtocol, &filesystemRoot)) {
Error(L"Error: Could not open ESP volume.\n");
}
if (EFI_SUCCESS != uefi_call_wrapper(filesystemRoot->Open, 5, filesystemRoot, &kernelFile, L"eskernel.esx", EFI_FILE_MODE_READ, 0)) {
Error(L"Error: Could not open eskernel.esx.\n");
}
size = KERNEL_BUFFER_SIZE;
if (EFI_SUCCESS != uefi_call_wrapper(kernelFile->Read, 3, kernelFile, &size, kernelBuffer)) {
Error(L"Error: Could not load eskernel.esx.\n");
}
// Print(L"Kernel size: %d bytes\n", size);
if (size == KERNEL_BUFFER_SIZE) {
Error(L"Error: Kernel too large to fit into buffer.\n");
}
if (EFI_SUCCESS != uefi_call_wrapper(filesystemRoot->Open, 5, filesystemRoot, &iidFile, L"esiid.dat", EFI_FILE_MODE_READ, 0)) {
Error(L"Error: Could not open esiid.dat.\n");
}
size = IID_BUFFER_SIZE;
if (EFI_SUCCESS != uefi_call_wrapper(iidFile->Read, 3, iidFile, &size, iidBuffer)) {
Error(L"Error: Could not load esiid.dat.\n");
}
if (EFI_SUCCESS != uefi_call_wrapper(filesystemRoot->Open, 5, filesystemRoot, &loaderFile, L"esloader.bin", EFI_FILE_MODE_READ, 0)) {
Error(L"Error: Could not open esloader.bin.\n");
}
size = 0x80000;
if (EFI_SUCCESS != uefi_call_wrapper(loaderFile->Read, 3, loaderFile, &size, (char *) 0x180000)) {
Error(L"Error: Could not load esloader.bin.\n");
}
}
// Get the graphics mode information.
// TODO Mode picking.
// TODO Get EDID information, if available.
{
EFI_GRAPHICS_OUTPUT_PROTOCOL *graphicsOutputProtocol;
EFI_GUID graphicsOutputProtocolGUID = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
if (EFI_SUCCESS != uefi_call_wrapper(systemTable->BootServices->LocateProtocol, 3, &graphicsOutputProtocolGUID, NULL, (void **) &graphicsOutputProtocol)) {
Error(L"Error: Could not open protocol 3.\n");
}
horizontalResolution = graphicsOutputProtocol->Mode->Info->HorizontalResolution;
verticalResolution = graphicsOutputProtocol->Mode->Info->VerticalResolution;
pixelsPerScanline = graphicsOutputProtocol->Mode->Info->PixelsPerScanLine;
framebuffer = (uint32_t *) graphicsOutputProtocol->Mode->FrameBufferBase;
}
// Get the memory map.
{
UINTN descriptorSize, size = MEMORY_MAP_BUFFER_SIZE;
UINT32 descriptorVersion;
if (EFI_SUCCESS != uefi_call_wrapper(systemTable->BootServices->GetMemoryMap, 5, &size,
(EFI_MEMORY_DESCRIPTOR *) memoryMapBuffer, &mapKey, &descriptorSize, &descriptorVersion)) {
Error(L"Error: Could not get memory map.\n");
}
uintptr_t memoryRegionCount = 0;
for (uintptr_t i = 0; i < size / descriptorSize && memoryRegionCount != MAX_MEMORY_REGIONS - 1; i++) {
EFI_MEMORY_DESCRIPTOR *descriptor = (EFI_MEMORY_DESCRIPTOR *) (memoryMapBuffer + i * descriptorSize);
if (descriptor->Type == EfiConventionalMemory && descriptor->PhysicalStart >= 0x300000) {
memoryRegions[memoryRegionCount].base = descriptor->PhysicalStart;
memoryRegions[memoryRegionCount].pages = descriptor->NumberOfPages;
memoryRegionCount++;
}
}
memoryRegions[memoryRegionCount].base = 0;
}
// Exit boot services.
{
if (EFI_SUCCESS != uefi_call_wrapper(systemTable->BootServices->ExitBootServices, 2, imageHandle, mapKey)) {
Error(L"Error: Could not exit boot services.\n");
}
}
// Identity map the first 3MB for the loader.
{
uint64_t *paging = (uint64_t *) 0x140000;
ZeroMemory(paging, 0x5000);
paging[0x1FE] = 0x140003; // Recursive
paging[0x000] = 0x141003; // L4
paging[0x200] = 0x142003; // L3
paging[0x400] = 0x143003; // L2
paging[0x401] = 0x144003;
for (uintptr_t i = 0; i < 0x400; i++) {
paging[0x600 + i] = (i * 0x1000) | 3; // L1
}
}
// Copy the installation ID across.
{
uint8_t *destination = (uint8_t *) (0x107FF0);
for (uintptr_t i = 0; i < 16; i++) {
destination[i] = iidBuffer[i];
}
}
// Copy the graphics information across.
{
VideoModeInformation *destination = (VideoModeInformation *) (0x107000);
destination->widthPixels = horizontalResolution;
destination->heightPixels = verticalResolution;
destination->bufferPhysical = (uint64_t) framebuffer;
destination->bytesPerScanlineLinear = pixelsPerScanline * 4;
destination->bitsPerPixel = 32;
destination->valid = 1;
destination->edidValid = 0;
}
// Allocate and map memory for the kernel.
{
uint64_t nextPageTable = 0x1C0000;
header = (ElfHeader *) kernelBuffer;
ElfProgramHeader *programHeaders = (ElfProgramHeader *) (kernelBuffer + header->programHeaderTable);
uintptr_t programHeaderEntrySize = header->programHeaderEntrySize;
for (uintptr_t i = 0; i < header->programHeaderEntries; i++) {
ElfProgramHeader *header = (ElfProgramHeader *) ((uint8_t *) programHeaders + programHeaderEntrySize * i);
if (header->type != 1) continue;
uintptr_t pagesToAllocate = header->segmentSize >> 12;
if (header->segmentSize & 0xFFF) pagesToAllocate++;
uintptr_t physicalAddress = 0;
for (uintptr_t j = 0; j < MAX_MEMORY_REGIONS; j++) {
MemoryRegion *region = memoryRegions + j;
if (!region->base) break;
if (region->pages < pagesToAllocate) continue;
physicalAddress = region->base;
region->pages -= pagesToAllocate;
region->base += pagesToAllocate << 12;
break;
}
if (!physicalAddress) {
// TODO Error handling.
*((uint32_t *) framebuffer + 3) = 0xFFFF00FF;
while (1);
}
for (uintptr_t j = 0; j < pagesToAllocate; j++, physicalAddress += 0x1000) {
uintptr_t virtualAddress = header->virtualAddress + j * K_PAGE_SIZE;
physicalAddress &= 0xFFFFFFFFFFFFF000;
virtualAddress &= 0x0000FFFFFFFFF000;
uintptr_t indexL4 = (virtualAddress >> (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 3)) & (ENTRIES_PER_PAGE_TABLE - 1);
uintptr_t indexL3 = (virtualAddress >> (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 2)) & (ENTRIES_PER_PAGE_TABLE - 1);
uintptr_t indexL2 = (virtualAddress >> (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 1)) & (ENTRIES_PER_PAGE_TABLE - 1);
uintptr_t indexL1 = (virtualAddress >> (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 0)) & (ENTRIES_PER_PAGE_TABLE - 1);
uint64_t *tableL4 = (uint64_t *) 0x140000;
if (!(tableL4[indexL4] & 1)) {
tableL4[indexL4] = nextPageTable | 7;
ZeroMemory((void *) nextPageTable, K_PAGE_SIZE);
nextPageTable += K_PAGE_SIZE;
}
uint64_t *tableL3 = (uint64_t *) (tableL4[indexL4] & ~(K_PAGE_SIZE - 1));
if (!(tableL3[indexL3] & 1)) {
tableL3[indexL3] = nextPageTable | 7;
ZeroMemory((void *) nextPageTable, K_PAGE_SIZE);
nextPageTable += K_PAGE_SIZE;
}
uint64_t *tableL2 = (uint64_t *) (tableL3[indexL3] & ~(K_PAGE_SIZE - 1));
if (!(tableL2[indexL2] & 1)) {
tableL2[indexL2] = nextPageTable | 7;
ZeroMemory((void *) nextPageTable, K_PAGE_SIZE);
nextPageTable += K_PAGE_SIZE;
}
uint64_t *tableL1 = (uint64_t *) (tableL2[indexL2] & ~(K_PAGE_SIZE - 1));
uintptr_t value = physicalAddress | 3;
tableL1[indexL1] = value;
}
}
}
// Copy the memory regions information across.
{
MemoryRegion *destination = (MemoryRegion *) 0x160000;
for (uintptr_t i = 0; i < MAX_MEMORY_REGIONS; i++) {
destination[i] = memoryRegions[i];
}
}
// Start the loader.
{
((void (*)()) 0x180000)();
}
while (1);
return EFI_SUCCESS;
}