// This file is part of the Essence operating system. // It is released under the terms of the MIT license -- see LICENSE.md. // Written by: nakst. #ifndef IMPLEMENTATION struct MMArchVAS { // NOTE Must be first in the structure. See ProcessorSetAddressSpace and ArchSwitchContext. uintptr_t cr3; // Each process has a 47-bit address space. // That's 2^35 pages. // That's 2^26 L1 page tables. 2^23 bytes of bitset. // That's 2^17 L2 page tables. 2^14 bytes of bitset. // That's 2^ 8 L3 page tables. 2^ 5 bytes of bitset. // Tracking of the committed L1 tables is done in l1Commit, a region of coreMMSpace. // (This array is committed as needed, tracked using l1CommitCommit.) // Tracking of the committed L2 tables is done in l2Commit. // Tracking of the committed L3 tables is done in l3Commit. #define L1_COMMIT_SIZE_BYTES (1 << 23) #define L1_COMMIT_COMMIT_SIZE_BYTES (1 << 8) #define L2_COMMIT_SIZE_BYTES (1 << 14) #define L3_COMMIT_SIZE_BYTES (1 << 5) uint8_t *l1Commit; uint8_t l1CommitCommit[L1_COMMIT_COMMIT_SIZE_BYTES]; uint8_t l2Commit[L2_COMMIT_SIZE_BYTES]; uint8_t l3Commit[L3_COMMIT_SIZE_BYTES]; size_t pageTablesCommitted; size_t pageTablesActive; // TODO Consider core/kernel mutex consistency? I think it's fine, but... KMutex mutex; // Acquire to modify the page tables. }; #define MM_CORE_REGIONS_START (0xFFFF8001F0000000) #define MM_CORE_REGIONS_COUNT ((0xFFFF800200000000 - 0xFFFF8001F0000000) / sizeof(MMRegion)) #define MM_KERNEL_SPACE_START (0xFFFF900000000000) #define MM_KERNEL_SPACE_SIZE (0xFFFFF00000000000 - 0xFFFF900000000000) #define MM_MODULES_START (0xFFFFFFFF90000000) #define MM_MODULES_SIZE (0xFFFFFFFFC0000000 - 0xFFFFFFFF90000000) #define ArchCheckBundleHeader() (header.mapAddress > 0x800000000000UL || header.mapAddress < 0x1000 || fileSize > 0x1000000000000UL) #define ArchCheckELFHeader() (header->virtualAddress > 0x800000000000UL || header->virtualAddress < 0x1000 || header->segmentSize > 0x1000000000000UL) #define K_ARCH_STACK_GROWS_DOWN #define K_ARCH_NAME "x86_64" #endif #ifdef IMPLEMENTATION #define MM_CORE_SPACE_START (0xFFFF800100000000) #define MM_CORE_SPACE_SIZE (0xFFFF8001F0000000 - 0xFFFF800100000000) #define MM_USER_SPACE_START (0x100000000000) #define MM_USER_SPACE_SIZE (0xF00000000000 - 0x100000000000) #define LOW_MEMORY_MAP_START (0xFFFFFE0000000000) #define LOW_MEMORY_LIMIT (0x100000000) // The first 4GB is mapped here. // Recursive page table mapping in slot 0x1FE, so that the top 2GB are available for mcmodel kernel. #define PAGE_TABLE_L4 ((volatile uint64_t *) 0xFFFFFF7FBFDFE000) #define PAGE_TABLE_L3 ((volatile uint64_t *) 0xFFFFFF7FBFC00000) #define PAGE_TABLE_L2 ((volatile uint64_t *) 0xFFFFFF7F80000000) #define PAGE_TABLE_L1 ((volatile uint64_t *) 0xFFFFFF0000000000) #define ENTRIES_PER_PAGE_TABLE (512) #define ENTRIES_PER_PAGE_TABLE_BITS (9) uint8_t coreL1Commit[(0xFFFF800200000000 - 0xFFFF800100000000) >> (/* ENTRIES_PER_PAGE_TABLE_BITS */ 9 + K_PAGE_BITS + 3)]; extern "C" uintptr_t ProcessorGetRSP(); extern "C" uintptr_t ProcessorGetRBP(); extern "C" uint64_t ProcessorReadMXCSR(); extern "C" void ProcessorInstallTSS(uint32_t *gdt, uint32_t *tss); extern "C" void SSSE3Framebuffer32To24Copy(volatile uint8_t *destination, volatile uint8_t *source, size_t pixelGroups); extern "C" uintptr_t _KThreadTerminate; extern bool pagingNXESupport; extern bool pagingPCIDSupport; extern bool pagingSMEPSupport; extern bool pagingTCESupport; extern "C" bool simdSSE3Support; extern "C" bool simdSSSE3Support; struct InterruptContext { uint64_t cr2, ds; uint8_t fxsave[512 + 16]; uint64_t _check, cr8; uint64_t r15, r14, r13, r12, r11, r10, r9, r8; uint64_t rbp, rdi, rsi, rdx, rcx, rbx, rax; uint64_t interruptNumber, errorCode; uint64_t rip, cs, flags, rsp, ss; }; #include #include #include volatile uintptr_t tlbShootdownVirtualAddress; volatile size_t tlbShootdownPageCount; typedef void (*CallFunctionOnAllProcessorsCallbackFunction)(); volatile CallFunctionOnAllProcessorsCallbackFunction callFunctionOnAllProcessorsCallback; volatile uintptr_t callFunctionOnAllProcessorsRemaining; void ArchSetPCIIRQLine(uint8_t slot, uint8_t pin, uint8_t line) { pciIRQLines[slot][pin] = line; } bool MMArchCommitPageTables(MMSpace *space, MMRegion *region) { KMutexAssertLocked(&space->reserveMutex); MMArchVAS *data = &space->data; uintptr_t base = (region->baseAddress - (space == coreMMSpace ? MM_CORE_SPACE_START : 0)) & 0x7FFFFFFFF000; uintptr_t end = base + (region->pageCount << K_PAGE_BITS); uintptr_t needed = 0; for (uintptr_t i = base; i < end; i += 1L << (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 3)) { uintptr_t indexL4 = i >> (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 3); if (!(data->l3Commit[indexL4 >> 3] & (1 << (indexL4 & 7)))) needed++; i = indexL4 << (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 3); } for (uintptr_t i = base; i < end; i += 1L << (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 2)) { uintptr_t indexL3 = i >> (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 2); if (!(data->l2Commit[indexL3 >> 3] & (1 << (indexL3 & 7)))) needed++; i = indexL3 << (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 2); } uintptr_t previousIndexL2I = -1; for (uintptr_t i = base; i < end; i += 1L << (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 1)) { uintptr_t indexL2 = i >> (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 1); uintptr_t indexL2I = indexL2 >> 15; if (!(data->l1CommitCommit[indexL2I >> 3] & (1 << (indexL2I & 7)))) needed += previousIndexL2I != indexL2I ? 2 : 1; else if (!(data->l1Commit[indexL2 >> 3] & (1 << (indexL2 & 7)))) needed++; previousIndexL2I = indexL2I; i = indexL2 << (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 1); } if (needed) { if (!MMCommit(needed * K_PAGE_SIZE, true)) { return false; } data->pageTablesCommitted += needed; } for (uintptr_t i = base; i < end; i += 1L << (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 3)) { uintptr_t indexL4 = i >> (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 3); data->l3Commit[indexL4 >> 3] |= (1 << (indexL4 & 7)); i = indexL4 << (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 3); } for (uintptr_t i = base; i < end; i += 1L << (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 2)) { uintptr_t indexL3 = i >> (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 2); data->l2Commit[indexL3 >> 3] |= (1 << (indexL3 & 7)); i = indexL3 << (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 2); } for (uintptr_t i = base; i < end; i += 1L << (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 1)) { uintptr_t indexL2 = i >> (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 1); uintptr_t indexL2I = indexL2 >> 15; data->l1CommitCommit[indexL2I >> 3] |= (1 << (indexL2I & 7)); data->l1Commit[indexL2 >> 3] |= (1 << (indexL2 & 7)); i = indexL2 << (K_PAGE_BITS + ENTRIES_PER_PAGE_TABLE_BITS * 1); } return true; } bool MMArchIsBufferInUserRange(uintptr_t baseAddress, size_t byteCount) { if (baseAddress & 0xFFFF800000000000) return false; if (byteCount & 0xFFFF800000000000) return false; if ((baseAddress + byteCount) & 0xFFFF800000000000) return false; return true; } bool MMArchHandlePageFault(uintptr_t address, uint32_t flags) { // EsPrint("Fault %x\n", address); address &= ~(K_PAGE_SIZE - 1); bool forSupervisor = flags & MM_HANDLE_PAGE_FAULT_FOR_SUPERVISOR; if (!ProcessorAreInterruptsEnabled()) { KernelPanic("MMArchHandlePageFault - Page fault with interrupts disabled.\n"); } if (address < K_PAGE_SIZE) { } else if (address >= LOW_MEMORY_MAP_START && address < LOW_MEMORY_MAP_START + LOW_MEMORY_LIMIT && forSupervisor) { // We want to access a physical page within the first 4GB. MMArchMapPage(kernelMMSpace, address - LOW_MEMORY_MAP_START, address, MM_MAP_PAGE_COMMIT_TABLES_NOW); return true; } else if (address >= MM_CORE_REGIONS_START && address < MM_CORE_REGIONS_START + MM_CORE_REGIONS_COUNT * sizeof(MMRegion) && forSupervisor) { // This is where coreMMSpace stores its regions. // Allocate physical memory and map it. MMArchMapPage(kernelMMSpace, MMPhysicalAllocate(MM_PHYSICAL_ALLOCATE_ZEROED), address, MM_MAP_PAGE_COMMIT_TABLES_NOW); return true; } else if (address >= MM_CORE_SPACE_START && address < MM_CORE_SPACE_START + MM_CORE_SPACE_SIZE && forSupervisor) { return MMHandlePageFault(coreMMSpace, address, flags); } else if (address >= MM_KERNEL_SPACE_START && address < MM_KERNEL_SPACE_START + MM_KERNEL_SPACE_SIZE && forSupervisor) { return MMHandlePageFault(kernelMMSpace, address, flags); } else if (address >= MM_MODULES_START && address < MM_MODULES_START + MM_MODULES_SIZE && forSupervisor) { return MMHandlePageFault(kernelMMSpace, address, flags); } else { Thread *thread = GetCurrentThread(); MMSpace *space = thread->temporaryAddressSpace; if (!space) space = thread->process->vmm; return MMHandlePageFault(space, address, flags); } return false; } void ArchCallFunctionOnAllProcessors(CallFunctionOnAllProcessorsCallbackFunction callback, bool includingThisProcessor) { KSpinlockAssertLocked(&ipiLock); if (KGetCPUCount() > 1) { callFunctionOnAllProcessorsCallback = callback; callFunctionOnAllProcessorsRemaining = KGetCPUCount(); size_t ignored = ProcessorSendIPI(CALL_FUNCTION_ON_ALL_PROCESSORS_IPI); __sync_fetch_and_sub(&callFunctionOnAllProcessorsRemaining, ignored); while (callFunctionOnAllProcessorsRemaining); static volatile size_t totalIgnored = 0; totalIgnored += ignored; } if (includingThisProcessor) callback(); } // TODO How should this be determined? #define INVALIDATE_ALL_PAGES_THRESHOLD (1024) void TLBShootdownCallback() { uintptr_t page = tlbShootdownVirtualAddress; if (tlbShootdownPageCount > INVALIDATE_ALL_PAGES_THRESHOLD) { ProcessorInvalidateAllPages(); } else { for (uintptr_t i = 0; i < tlbShootdownPageCount; i++, page += K_PAGE_SIZE) { ProcessorInvalidatePage(page); } } } void MMArchInvalidatePages(uintptr_t virtualAddressStart, uintptr_t pageCount) { // This must be done with spinlock acquired, otherwise this processor could change. // TODO Only send the IPI to the processors that are actually executing threads with the virtual address space. // Currently we only support the kernel's virtual address space, so this'll apply to all processors. // If we use Intel's PCID then we may have to send this to all processors anyway. // And we'll probably also have to be careful with shared memory regions. // ...actually I think we might not bother doing this. KSpinlockAcquire(&ipiLock); tlbShootdownVirtualAddress = virtualAddressStart; tlbShootdownPageCount = pageCount; ArchCallFunctionOnAllProcessors(TLBShootdownCallback, true); KSpinlockRelease(&ipiLock); } InterruptContext *ArchInitialiseThread(uintptr_t kernelStack, uintptr_t kernelStackSize, Thread *thread, uintptr_t startAddress, uintptr_t argument1, uintptr_t argument2, bool userland, uintptr_t stack, uintptr_t userStackSize) { InterruptContext *context = ((InterruptContext *) (kernelStack + kernelStackSize - 8)) - 1; thread->kernelStack = kernelStack + kernelStackSize - 8; // Terminate the thread when the outermost function exists. *((uintptr_t *) (kernelStack + kernelStackSize - 8)) = (uintptr_t) &_KThreadTerminate; context->fxsave[32] = 0x80; context->fxsave[33] = 0x1F; if (userland) { context->cs = 0x5B; context->ds = 0x63; context->ss = 0x63; } else { context->cs = 0x48; context->ds = 0x50; context->ss = 0x50; } context->_check = 0x123456789ABCDEF; // Stack corruption detection. context->flags = 1 << 9; // Interrupt flag context->rip = startAddress; context->rsp = stack + userStackSize - 8; // The stack should be 16-byte aligned before the call instruction. context->rdi = argument1; context->rsi = argument2; return context; } bool MMArchInitialiseUserSpace(MMSpace *space, MMRegion *region) { region->baseAddress = MM_USER_SPACE_START; region->pageCount = MM_USER_SPACE_SIZE / K_PAGE_SIZE; if (!MMCommit(K_PAGE_SIZE, true)) { return false; } space->data.cr3 = MMPhysicalAllocate(ES_FLAGS_DEFAULT); KMutexAcquire(&coreMMSpace->reserveMutex); MMRegion *l1Region = MMReserve(coreMMSpace, L1_COMMIT_SIZE_BYTES, MM_REGION_NORMAL | MM_REGION_NO_COMMIT_TRACKING | MM_REGION_FIXED); if (l1Region) space->data.l1Commit = (uint8_t *) l1Region->baseAddress; KMutexRelease(&coreMMSpace->reserveMutex); if (!space->data.l1Commit) { return false; } uint64_t *pageTable = (uint64_t *) MMMapPhysical(kernelMMSpace, (uintptr_t) space->data.cr3, K_PAGE_SIZE, ES_FLAGS_DEFAULT); EsMemoryZero(pageTable + 0x000, K_PAGE_SIZE / 2); EsMemoryCopy(pageTable + 0x100, (uint64_t *) (PAGE_TABLE_L4 + 0x100), K_PAGE_SIZE / 2); pageTable[512 - 2] = space->data.cr3 | 3; MMFree(kernelMMSpace, pageTable); return true; } void MMArchFreeVAS(MMSpace *space) { for (uintptr_t i = 0; i < 256; i++) { if (!PAGE_TABLE_L4[i]) continue; for (uintptr_t j = i * ENTRIES_PER_PAGE_TABLE; j < (i + 1) * ENTRIES_PER_PAGE_TABLE; j++) { if (!PAGE_TABLE_L3[j]) continue; for (uintptr_t k = j * ENTRIES_PER_PAGE_TABLE; k < (j + 1) * ENTRIES_PER_PAGE_TABLE; k++) { if (!PAGE_TABLE_L2[k]) continue; MMPhysicalFree(PAGE_TABLE_L2[k] & ~(K_PAGE_SIZE - 1)); space->data.pageTablesActive--; } MMPhysicalFree(PAGE_TABLE_L3[j] & ~(K_PAGE_SIZE - 1)); space->data.pageTablesActive--; } MMPhysicalFree(PAGE_TABLE_L4[i] & ~(K_PAGE_SIZE - 1)); space->data.pageTablesActive--; } if (space->data.pageTablesActive) { KernelPanic("MMArchFreeVAS - Space %x still has %d page tables active.\n", space, space->data.pageTablesActive); } KMutexAcquire(&coreMMSpace->reserveMutex); MMRegion *l1CommitRegion = MMFindRegion(coreMMSpace, (uintptr_t) space->data.l1Commit); MMArchUnmapPages(coreMMSpace, l1CommitRegion->baseAddress, l1CommitRegion->pageCount, MM_UNMAP_PAGES_FREE); MMUnreserve(coreMMSpace, l1CommitRegion, false /* we manually unmap pages above, so we can free them */); KMutexRelease(&coreMMSpace->reserveMutex); MMDecommit(space->data.pageTablesCommitted * K_PAGE_SIZE, true); } void MMArchFinalizeVAS(MMSpace *space) { if (!space->data.cr3) return; // Freeing the L4 page table has to be done in the kernel process, since it's the page CR3 would points to! // Therefore, this function only is called in an async task. if (space->data.cr3 == ProcessorReadCR3()) KernelPanic("MMArchFinalizeVAS - Space %x is active.\n", space); PMZero(&space->data.cr3, 1, true); // Fail as fast as possible if someone's still using this page. MMPhysicalFree(space->data.cr3); MMDecommit(K_PAGE_SIZE, true); } void ContextSanityCheck(InterruptContext *context) { if (!context || context->cs > 0x100 || context->ds > 0x100 || context->ss > 0x100 || (context->rip >= 0x1000000000000 && context->rip < 0xFFFF000000000000) || (context->rip < 0xFFFF800000000000 && context->cs == 0x48)) { KernelPanic("ContextSanityCheck - Corrupt context (%x/%x/%x/%x)\nRIP = %x, RSP = %x\n", context, context->cs, context->ds, context->ss, context->rip, context->rsp); } } extern "C" void InterruptHandler(InterruptContext *context) { if (scheduler.panic && context->interruptNumber != 2) { return; } if (ProcessorAreInterruptsEnabled()) { KernelPanic("InterruptHandler - Interrupts were enabled at the start of an interrupt handler.\n"); } CPULocalStorage *local = GetLocalStorage(); uintptr_t interrupt = context->interruptNumber; if (local && local->spinlockCount && context->cr8 != 0xE) { KernelPanic("InterruptHandler - Local spinlockCount is %d but interrupts were enabled (%x/%x).\n", local->spinlockCount, local, context); } #if 0 #ifdef EARLY_DEBUGGING #ifdef VGA_TEXT_MODE if (local) { TERMINAL_ADDRESS[local->processorID] += 0x1000; } #else if (graphics.target && graphics.target->debugPutBlock) { graphics.target->debugPutBlock(local->processorID * 3 + 3, 3, true); graphics.target->debugPutBlock(local->processorID * 3 + 4, 3, true); graphics.target->debugPutBlock(local->processorID * 3 + 3, 4, true); graphics.target->debugPutBlock(local->processorID * 3 + 4, 4, true); } #endif #endif #endif if (interrupt < 0x20) { // If we received a non-maskable interrupt, halt execution. if (interrupt == 2) { local->panicContext = context; ProcessorHalt(); } bool supervisor = (context->cs & 3) == 0; if (!supervisor) { // EsPrint("User interrupt: %x/%x/%x\n", interrupt, context->cr2, context->errorCode); if (context->cs != 0x5B && context->cs != 0x6B) { KernelPanic("InterruptHandler - Unexpected value of CS 0x%X\n", context->cs); } if (GetCurrentThread()->isKernelThread) { KernelPanic("InterruptHandler - Kernel thread executing user code. (1)\n"); } // User-code exceptions are *basically* the same thing as system calls. Thread *currentThread = GetCurrentThread(); ThreadTerminatableState previousTerminatableState; previousTerminatableState = currentThread->terminatableState; currentThread->terminatableState = THREAD_IN_SYSCALL; if (local && local->spinlockCount) { KernelPanic("InterruptHandler - User exception occurred with spinlock acquired.\n"); } // Re-enable interrupts during exception handling. ProcessorEnableInterrupts(); if (interrupt == 14) { bool success = MMArchHandlePageFault(context->cr2, (context->errorCode & 2) ? MM_HANDLE_PAGE_FAULT_WRITE : 0); if (success) { goto resolved; } } if (interrupt == 0x13) { EsPrint("ProcessorReadMXCSR() = %x\n", ProcessorReadMXCSR()); } // TODO Usermode exceptions and debugging. KernelLog(LOG_ERROR, "Arch", "unhandled userland exception", "InterruptHandler - Exception (%z) in userland process (%z).\nRIP = %x (CPU %d)\nRSP = %x\nX86_64 error codes: [err] %x, [cr2] %x\n", exceptionInformation[interrupt], currentThread->process->cExecutableName, context->rip, local->processorID, context->rsp, context->errorCode, context->cr2); EsPrint("Attempting to make a stack trace...\n"); { uint64_t rbp = context->rbp; int traceDepth = 0; while (rbp && traceDepth < 32) { uint64_t value; if (!MMArchIsBufferInUserRange(rbp, 16)) break; if (!MMArchSafeCopy((uintptr_t) &value, rbp + 8, sizeof(uint64_t))) break; EsPrint("\t%d: %x\n", ++traceDepth, value); if (!value) break; if (!MMArchSafeCopy((uintptr_t) &rbp, rbp, sizeof(uint64_t))) break; } } EsPrint("Stack trace complete.\n"); EsCrashReason crashReason; EsMemoryZero(&crashReason, sizeof(EsCrashReason)); crashReason.errorCode = ES_FATAL_ERROR_PROCESSOR_EXCEPTION; crashReason.duringSystemCall = (EsSyscallType) -1; scheduler.CrashProcess(currentThread->process, &crashReason); resolved:; if (currentThread->terminatableState != THREAD_IN_SYSCALL) { KernelPanic("InterruptHandler - Thread changed terminatable status during interrupt.\n"); } currentThread->terminatableState = previousTerminatableState; if (currentThread->terminating || currentThread->paused) { ProcessorFakeTimerInterrupt(); } // Disable interrupts when we're done. ProcessorDisableInterrupts(); // EsPrint("User interrupt complete.\n", interrupt, context->cr2); } else { if (context->cs != 0x48) { KernelPanic("InterruptHandler - Unexpected value of CS 0x%X\n", context->cs); } if (interrupt == 14) { // EsPrint("PF: %x\n", context->cr2); if ((context->errorCode & (1 << 3))) { goto fault; } if ((context->flags & 0x200) && context->cr8 != 0xE) { ProcessorEnableInterrupts(); } if (local && local->spinlockCount && ((context->cr2 >= 0xFFFF900000000000 && context->cr2 < 0xFFFFF00000000000) || context->cr2 < 0x8000000000000000)) { KernelPanic("HandlePageFault - Page fault occurred with spinlocks active at %x (S = %x, B = %x, LG = %x, CR2 = %x, local = %x).\n", context->rip, context->rsp, context->rbp, local->currentThread->lastKnownExecutionAddress, context->cr2, local); } if (!MMArchHandlePageFault(context->cr2, MM_HANDLE_PAGE_FAULT_FOR_SUPERVISOR | ((context->errorCode & 2) ? MM_HANDLE_PAGE_FAULT_WRITE : 0))) { if (local->currentThread->inSafeCopy && context->cr2 < 0x8000000000000000) { context->rip = context->r8; // See definition of MMArchSafeCopy. } else { goto fault; } } ProcessorDisableInterrupts(); } else { fault: KernelPanic("Unresolvable processor exception encountered in supervisor mode.\n%z\nRIP = %x (CPU %d)\nX86_64 error codes: [err] %x, [cr2] %x\n" "Stack: [rsp] %x, [rbp] %x\nRegisters: [rax] %x, [rbx] %x, [rsi] %x, [rdi] %x.\nThread ID = %d\n", exceptionInformation[interrupt], context->rip, local ? local->processorID : -1, context->errorCode, context->cr2, context->rsp, context->rbp, context->rax, context->rbx, context->rsi, context->rdi, local && local->currentThread ? local->currentThread->id : -1); } } } else if (interrupt == 0xFF) { // Spurious interrupt (APIC), ignore. } else if (interrupt >= 0x20 && interrupt < 0x30) { // Spurious interrupt (PIC), ignore. } else if (interrupt >= 0xF0 && interrupt < 0xFE) { // IPI. // Warning: This code executes at a special IRQL! Do not acquire spinlocks!! if (interrupt == CALL_FUNCTION_ON_ALL_PROCESSORS_IPI) { if (!callFunctionOnAllProcessorsRemaining) KernelPanic("InterruptHandler - callFunctionOnAllProcessorsRemaining is 0 (a).\n"); callFunctionOnAllProcessorsCallback(); if (!callFunctionOnAllProcessorsRemaining) KernelPanic("InterruptHandler - callFunctionOnAllProcessorsRemaining is 0 (b).\n"); __sync_fetch_and_sub(&callFunctionOnAllProcessorsRemaining, 1); } LapicEndOfInterrupt(); } else if (interrupt >= INTERRUPT_VECTOR_MSI_START && interrupt < INTERRUPT_VECTOR_MSI_START + INTERRUPT_VECTOR_MSI_COUNT && local) { KSpinlockAcquire(&irqHandlersLock); MSIHandler handler = msiHandlers[interrupt - INTERRUPT_VECTOR_MSI_START]; KSpinlockRelease(&irqHandlersLock); local->irqSwitchThread = false; if (!handler.callback) { KernelLog(LOG_ERROR, "Arch", "unexpected MSI", "Unexpected MSI vector %X (no handler).\n", interrupt); } else { handler.callback(interrupt - INTERRUPT_VECTOR_MSI_START, handler.context); } if (local->irqSwitchThread && scheduler.started && local->schedulerReady) { scheduler.Yield(context); // LapicEndOfInterrupt is called in PostContextSwitch. KernelPanic("InterruptHandler - Returned from Scheduler::Yield.\n"); } LapicEndOfInterrupt(); } else if (local) { // IRQ. local->irqSwitchThread = false; if (interrupt == TIMER_INTERRUPT) { local->irqSwitchThread = true; } else if (interrupt == YIELD_IPI) { local->irqSwitchThread = true; GetCurrentThread()->receivedYieldIPI = true; } else if (interrupt >= IRQ_BASE && interrupt < IRQ_BASE + 0x20) { GetLocalStorage()->inIRQ = true; uintptr_t line = interrupt - IRQ_BASE; KernelLog(LOG_VERBOSE, "Arch", "IRQ start", "IRQ start %d.\n", line); KSpinlockAcquire(&irqHandlersLock); for (uintptr_t i = 0; i < sizeof(irqHandlers) / sizeof(irqHandlers[0]); i++) { IRQHandler handler = irqHandlers[i]; if (!handler.callback) continue; if (handler.line == -1) { // Before we get the actual IRQ line information from ACPI (which might take it a while), // only test that the IRQ is in the correct range for PCI interrupts. // This is a bit slower because we have to dispatch the interrupt to more drivers, // but it shouldn't break anything because they're all supposed to handle overloading anyway. // This is mess. Hopefully all modern computers will use MSIs for anything important. if (line != 9 && line != 10 && line != 11) { continue; } else { uint8_t mappedLine = pciIRQLines[handler.pciDevice->slot][handler.pciDevice->interruptPin - 1]; if (mappedLine && line != mappedLine) { continue; } } } else { if ((uintptr_t) handler.line != line) { continue; } } KSpinlockRelease(&irqHandlersLock); handler.callback(interrupt - IRQ_BASE, handler.context); KSpinlockAcquire(&irqHandlersLock); } KSpinlockRelease(&irqHandlersLock); KernelLog(LOG_VERBOSE, "Arch", "IRQ end", "IRQ end %d.\n", line); GetLocalStorage()->inIRQ = false; } if (local->irqSwitchThread && scheduler.started && local->schedulerReady) { scheduler.Yield(context); // LapicEndOfInterrupt is called in PostContextSwitch. KernelPanic("InterruptHandler - Returned from Scheduler::Yield.\n"); } LapicEndOfInterrupt(); } // Sanity check. ContextSanityCheck(context); if (ProcessorAreInterruptsEnabled()) { KernelPanic("InterruptHandler - Interrupts were enabled while returning from an interrupt handler.\n"); } } extern "C" uintptr_t Syscall(uintptr_t argument0, uintptr_t argument1, uintptr_t argument2, uintptr_t returnAddress, uintptr_t argument3, uintptr_t argument4, uintptr_t *userStackPointer) { (void) returnAddress; return DoSyscall((EsSyscallType) argument0, argument1, argument2, argument3, argument4, false, nullptr, userStackPointer); } EsError ArchApplyRelocation(uintptr_t type, uint8_t *buffer, uintptr_t offset, uintptr_t result) { if (type == 0) {} else if (type == 10 /* R_X86_64_32 */) *((uint32_t *) (buffer + offset)) = result; else if (type == 11 /* R_X86_64_32S */) *((uint32_t *) (buffer + offset)) = result; else if (type == 1 /* R_X86_64_64 */) *((uint64_t *) (buffer + offset)) = result; else if (type == 2 /* R_X86_64_PC32 */) *((uint32_t *) (buffer + offset)) = result - ((uint64_t) buffer + offset); else if (type == 24 /* R_X86_64_PC64 */) *((uint64_t *) (buffer + offset)) = result - ((uint64_t) buffer + offset); else if (type == 4 /* R_X86_64_PLT32 */) *((uint32_t *) (buffer + offset)) = result - ((uint64_t) buffer + offset); else return ES_ERROR_UNSUPPORTED_FEATURE; return ES_SUCCESS; } #include #endif