// This file is part of the Essence operating system. // It is released under the terms of the MIT license -- see LICENSE.md. // Written by: nakst. // TODO Replace ES_ERROR_UNKNOWN with proper errors. // TODO Clean up the return values for system calls; with FATAL_ERRORs there should need to be less error codes returned. // TODO If a file system call fails with an error indicating the file system is corrupted, or a drive is failing, report the problem to the user. #ifdef IMPLEMENTATION #define SYSCALL_BUFFER_LIMIT (64 * 1024 * 1024) // To prevent overflow and DOS attacks. #define SYSCALL_BUFFER(address, length, index, write) \ MMRegion *_region ## index = MMFindAndPinRegion(currentVMM, (address), (length)); \ if (!_region ## index) SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_BUFFER, true); \ EsDefer(if (_region ## index) MMUnpinRegion(currentVMM, _region ## index)); \ if (write && (_region ## index->flags & MM_REGION_READ_ONLY) && (~_region ## index->flags & MM_REGION_COPY_ON_WRITE)) \ SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_BUFFER, true); #define SYSCALL_HANDLE_2(handle, _type, out) \ Handle _ ## out; \ uint8_t status_ ## out = currentProcess->handleTable.ResolveHandle(&_ ## out, handle, _type); \ if (status_ ## out == RESOLVE_HANDLE_FAILED) SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_HANDLE, true); \ EsDefer(if (status_ ## out == RESOLVE_HANDLE_NORMAL) CloseHandleToObject(_ ## out.object, _ ## out.type, _ ## out.flags)); \ const Handle out = _ ## out #define SYSCALL_HANDLE(handle, _type, out, variableType) \ Handle _ ## out; \ uint8_t status_ ## out = currentProcess->handleTable.ResolveHandle(&_ ## out, handle, _type); \ if (status_ ## out == RESOLVE_HANDLE_FAILED) SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_HANDLE, true); \ EsDefer(if (status_ ## out == RESOLVE_HANDLE_NORMAL) CloseHandleToObject(_ ## out.object, _ ## out.type, _ ## out.flags)); \ variableType *const out = (variableType *) _ ## out.object #define SYSCALL_READ(destination, source, length) \ if (!MMArchIsBufferInUserRange(source, length) || !MMArchSafeCopy((uintptr_t) (destination), source, length)) \ SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_BUFFER, true); #define SYSCALL_READ_HEAP(destination, source, length) \ *(void **) &(destination) = EsHeapAllocate((length), false, K_FIXED); \ if ((length) != 0 && !(destination)) SYSCALL_RETURN(ES_ERROR_INSUFFICIENT_RESOURCES, false); \ EsDefer(EsHeapFree((destination), (length), K_FIXED)); \ SYSCALL_READ(destination, source, length); #define SYSCALL_WRITE(destination, source, length) \ if (!MMArchIsBufferInUserRange(destination, length) || !MMArchSafeCopy(destination, (uintptr_t) (source), length)) \ SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_BUFFER, true); #define SYSCALL_ARGUMENTS uintptr_t argument0, uintptr_t argument1, uintptr_t argument2, uintptr_t argument3, \ Thread *currentThread, Process *currentProcess, MMSpace *currentVMM, uintptr_t *userStackPointer, bool *fatalError #define SYSCALL_IMPLEMENT(_type) uintptr_t Do ## _type (SYSCALL_ARGUMENTS) #define SYSCALL_RETURN(value, fatal) do { *fatalError = fatal; return (value); } while (0) #define SYSCALL_PERMISSION(x) do { if ((x) != (currentProcess->permissions & (x))) { *fatalError = true; return ES_FATAL_ERROR_INSUFFICIENT_PERMISSIONS; } } while (0) typedef uintptr_t (*SyscallFunction)(SYSCALL_ARGUMENTS); #pragma GCC diagnostic ignored "-Wunused-parameter" push SYSCALL_IMPLEMENT(ES_SYSCALL_COUNT) { SYSCALL_RETURN(ES_FATAL_ERROR_UNKNOWN_SYSCALL, true); } SYSCALL_IMPLEMENT(ES_SYSCALL_PRINT) { char *buffer; if (argument1 > SYSCALL_BUFFER_LIMIT) SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_BUFFER, true); SYSCALL_READ_HEAP(buffer, argument0, argument1); EsPrint("%s", argument1, buffer); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_MEMORY_ALLOCATE) { if (argument3) { if (argument0 > ES_SHARED_MEMORY_MAXIMUM_SIZE) SYSCALL_RETURN(ES_FATAL_ERROR_OUT_OF_RANGE, true); MMSharedRegion *region = MMSharedCreateRegion(argument0, false, 0); if (!region) SYSCALL_RETURN(ES_ERROR_INSUFFICIENT_RESOURCES, false); SYSCALL_RETURN(currentProcess->handleTable.OpenHandle(region, ES_SHARED_MEMORY_READ_WRITE, KERNEL_OBJECT_SHMEM), false); } else { EsMemoryProtection protection = (EsMemoryProtection) argument2; uint32_t flags = MM_REGION_USER; if (protection == ES_MEMORY_PROTECTION_READ_ONLY) flags |= MM_REGION_READ_ONLY; if (protection == ES_MEMORY_PROTECTION_EXECUTABLE) flags |= MM_REGION_EXECUTABLE; uintptr_t address = (uintptr_t) MMStandardAllocate(currentVMM, argument0, flags, nullptr, argument1 & ES_MEMORY_RESERVE_COMMIT_ALL); SYSCALL_RETURN(address, false); } } SYSCALL_IMPLEMENT(ES_SYSCALL_MEMORY_FREE) { if (!MMFree(currentVMM, (void *) argument0, argument1, true /* only allow freeing regions marked with MM_REGION_USER */)) { SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_MEMORY_REGION, true); } SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_MEMORY_COMMIT) { SYSCALL_BUFFER(argument0 << K_PAGE_BITS, argument1 << K_PAGE_BITS, 0, false); argument0 -= _region0->baseAddress >> K_PAGE_BITS; if (argument0 >= _region0->pageCount || argument1 > _region0->pageCount - argument0 || (~_region0->flags & MM_REGION_NORMAL) || (~_region0->flags & MM_REGION_USER) || !argument1) { SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_MEMORY_REGION, true); } bool success = false; if (argument2 == 0) { KMutexAcquire(¤tVMM->reserveMutex); success = MMCommitRange(currentVMM, _region0, argument0, argument1); KMutexRelease(¤tVMM->reserveMutex); } else if (argument2 == 1) { KMutexAcquire(¤tVMM->reserveMutex); success = MMDecommitRange(currentVMM, _region0, argument0, argument1); KMutexRelease(¤tVMM->reserveMutex); } else { SYSCALL_RETURN(ES_FATAL_ERROR_UNKNOWN_SYSCALL, true); } SYSCALL_RETURN(success ? ES_SUCCESS : ES_ERROR_INSUFFICIENT_RESOURCES, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_MEMORY_FAULT_RANGE) { bool success = MMFaultRange(argument0, argument1); SYSCALL_RETURN(success ? ES_SUCCESS : (intptr_t) ES_FATAL_ERROR_INVALID_BUFFER, !success); } SYSCALL_IMPLEMENT(ES_SYSCALL_MEMORY_GET_AVAILABLE) { MemoryAvailable available; EsMemoryZero(&available, sizeof(MemoryAvailable)); available.available = MM_REMAINING_COMMIT() * K_PAGE_SIZE; available.total = pmm.commitLimit * K_PAGE_SIZE; SYSCALL_WRITE(argument0, &available, sizeof(MemoryAvailable)); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_PROCESS_CREATE) { EsProcessCreationArguments arguments; SYSCALL_READ(&arguments, argument0, sizeof(EsProcessCreationArguments)); // Check the permissions. SYSCALL_PERMISSION(ES_PERMISSION_PROCESS_CREATE); if (arguments.permissions == ES_PERMISSION_INHERIT) { arguments.permissions = currentProcess->permissions; } if (arguments.permissions & ~currentProcess->permissions) { SYSCALL_RETURN(ES_FATAL_ERROR_INSUFFICIENT_PERMISSIONS, true); } // Check the executable file. SYSCALL_HANDLE(arguments.executable, KERNEL_OBJECT_NODE, executableObject, KNode); if (executableObject->directoryEntry->type != ES_NODE_FILE) { SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_NODE_TYPE, true); } // Check the handle list. if (arguments.handleCount > SYSCALL_BUFFER_LIMIT / sizeof(Handle)) { SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_BUFFER, true); } EsHandle *inHandles; SYSCALL_READ_HEAP(inHandles, (uintptr_t) arguments.handles, arguments.handleCount * sizeof(EsHandle)); uint32_t *inHandleModes; SYSCALL_READ_HEAP(inHandleModes, (uintptr_t) arguments.handleModes, arguments.handleCount * sizeof(uint32_t)); Handle *handles = (Handle *) EsHeapAllocate(sizeof(Handle) * arguments.handleCount, false, K_PAGED); if (!handles && arguments.handleCount) { SYSCALL_RETURN(ES_ERROR_INSUFFICIENT_RESOURCES, K_PAGED); } EsDefer(EsHeapFree(handles, sizeof(Handle) * arguments.handleCount, K_PAGED)); EsError error = ES_SUCCESS; for (uintptr_t i = 0; i < arguments.handleCount; i++) { if (RESOLVE_HANDLE_NORMAL != currentProcess->handleTable.ResolveHandle(&handles[i], inHandles[i], HANDLE_SHARE_TYPE_MASK)) { handles[i].object = nullptr; error = ES_FATAL_ERROR_INVALID_HANDLE; } } // Create the process. if (error == ES_SUCCESS) { Process *process = ProcessSpawn(PROCESS_NORMAL); if (!process) { error = ES_ERROR_INSUFFICIENT_RESOURCES; } else { process->creationFlags = arguments.flags; process->data = arguments.data; process->permissions = arguments.permissions; // Duplicate handles. for (uintptr_t i = 0; i < arguments.handleCount; i++) { EsError error2 = HandleShare(handles[i], process, inHandleModes[i], inHandles[i]); if (ES_CHECK_ERROR(error2)) { error = error2; break; } } // Start the process. if (error != ES_SUCCESS || !ProcessStartWithNode(process, executableObject)) { error = ES_ERROR_UNKNOWN; // TODO. CloseHandleToObject(process, KERNEL_OBJECT_PROCESS); } else { // Write the process information out. EsProcessInformation processInformation; EsMemoryZero(&processInformation, sizeof(EsProcessInformation)); processInformation.pid = process->id; processInformation.mainThread.tid = process->executableMainThread->id; processInformation.mainThread.handle = currentProcess->handleTable.OpenHandle(process->executableMainThread, 0, KERNEL_OBJECT_THREAD); processInformation.handle = currentProcess->handleTable.OpenHandle(process, 0, KERNEL_OBJECT_PROCESS); SYSCALL_WRITE(argument2, &processInformation, sizeof(EsProcessInformation)); } } } // Close handles. for (uintptr_t i = 0; i < arguments.handleCount; i++) { if (handles[i].object) { CloseHandleToObject(handles[i].object, handles[i].type, handles[i].flags); } } SYSCALL_RETURN(error, error >= 0); } SYSCALL_IMPLEMENT(ES_SYSCALL_SCREEN_FORCE_UPDATE) { if (argument0) { SYSCALL_PERMISSION(ES_PERMISSION_SCREEN_MODIFY); } KMutexAcquire(&windowManager.mutex); if (argument0) { windowManager.Redraw(ES_POINT(0, 0), graphics.frameBuffer.width, graphics.frameBuffer.height, nullptr); } GraphicsUpdateScreen(); KMutexRelease(&windowManager.mutex); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_EYEDROP_START) { SYSCALL_HANDLE(argument1, KERNEL_OBJECT_WINDOW, avoid, Window); windowManager.StartEyedrop(argument0, avoid, argument2); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_MESSAGE_GET) { _EsMessageWithObject message; EsMemoryZero(&message, sizeof(_EsMessageWithObject)); if (currentProcess->messageQueue.GetMessage(&message)) { SYSCALL_WRITE(argument0, &message, sizeof(_EsMessageWithObject)); SYSCALL_RETURN(ES_SUCCESS, false); } else { SYSCALL_RETURN(ES_ERROR_NO_MESSAGES_AVAILABLE, false); } } SYSCALL_IMPLEMENT(ES_SYSCALL_MESSAGE_WAIT) { currentThread->terminatableState = THREAD_USER_BLOCK_REQUEST; KEventWait(¤tProcess->messageQueue.notEmpty, argument0 /* timeout */); currentThread->terminatableState = THREAD_IN_SYSCALL; SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_WINDOW_CREATE) { SYSCALL_PERMISSION(ES_PERMISSION_WINDOW_MANAGER); if (argument0 == ES_WINDOW_NORMAL) { void *_window = windowManager.CreateEmbeddedWindow(currentProcess, (void *) argument2); SYSCALL_RETURN(currentProcess->handleTable.OpenHandle(_window, 0, KERNEL_OBJECT_EMBEDDED_WINDOW), false); } else { void *_window = windowManager.CreateWindow(currentProcess, (void *) argument2, (EsWindowStyle) argument0); if (!_window) { SYSCALL_RETURN(ES_ERROR_INSUFFICIENT_RESOURCES, false); } else { SYSCALL_RETURN(currentProcess->handleTable.OpenHandle(_window, 0, KERNEL_OBJECT_WINDOW), false); } } } SYSCALL_IMPLEMENT(ES_SYSCALL_WINDOW_CLOSE) { SYSCALL_HANDLE_2(argument0, (KernelObjectType) (KERNEL_OBJECT_WINDOW | KERNEL_OBJECT_EMBEDDED_WINDOW), _window); KMutexAcquire(&windowManager.mutex); if (_window.type == KERNEL_OBJECT_EMBEDDED_WINDOW) { EmbeddedWindow *window = (EmbeddedWindow *) _window.object; window->Close(); } else { Window *window = (Window *) _window.object; window->Close(); } KMutexRelease(&windowManager.mutex); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_WINDOW_SET_PROPERTY) { uint8_t property = argument3; SYSCALL_HANDLE_2(argument0, (property & 0x80) ? KERNEL_OBJECT_EMBEDDED_WINDOW : KERNEL_OBJECT_WINDOW, _window); Window *window = (Window *) _window.object; EmbeddedWindow *embed = (EmbeddedWindow *) _window.object; if (property == ES_WINDOW_PROPERTY_SOLID) { window->solid = (argument1 & ES_WINDOW_SOLID_TRUE) != 0; window->noClickActivate = (argument1 & ES_WINDOW_SOLID_NO_ACTIVATE) != 0; window->noBringToFront = (argument1 & ES_WINDOW_SOLID_NO_BRING_TO_FRONT) != 0; EsRectangle solidInsets = ES_RECT_1(0); if (argument2) SYSCALL_READ(&solidInsets, argument2, sizeof(EsRectangle)); window->solidOffsets = ES_RECT_4(solidInsets.l, -solidInsets.r, solidInsets.t, -solidInsets.b); KMutexAcquire(&windowManager.mutex); windowManager.MoveCursor(0, 0); KMutexRelease(&windowManager.mutex); } else if (property == ES_WINDOW_PROPERTY_OPAQUE_BOUNDS) { SYSCALL_READ(&window->opaqueBounds, argument1, sizeof(EsRectangle)); } else if (property == ES_WINDOW_PROPERTY_BLUR_BOUNDS) { SYSCALL_READ(&window->blurBounds, argument1, sizeof(EsRectangle)); } else if (property == ES_WINDOW_PROPERTY_ALPHA) { window->alpha = argument1 & 0xFF; } else if (property == ES_WINDOW_PROPERTY_FOCUSED) { KMutexAcquire(&windowManager.mutex); windowManager.ActivateWindow(window); windowManager.MoveCursor(0, 0); KMutexRelease(&windowManager.mutex); } else if (property == ES_WINDOW_PROPERTY_MATERIAL) { window->material = argument1; } else if (property == ES_WINDOW_PROPERTY_EMBED) { SYSCALL_HANDLE(argument1, (KernelObjectType) (KERNEL_OBJECT_EMBEDDED_WINDOW | KERNEL_OBJECT_NONE), embed, EmbeddedWindow); KMutexAcquire(&windowManager.mutex); window->SetEmbed(embed); KMutexRelease(&windowManager.mutex); } else if (property == ES_WINDOW_PROPERTY_EMBED_INSETS) { KMutexAcquire(&windowManager.mutex); SYSCALL_READ(&window->embedInsets, argument1, sizeof(EsRectangle)); window->ResizeEmbed(); KMutexRelease(&windowManager.mutex); } else if (property == ES_WINDOW_PROPERTY_OBJECT) { if (embed->owner != currentProcess) { // TODO Permissions. } embed->apiWindow = (void *) argument2; __sync_synchronize(); KMutexAcquire(&windowManager.mutex); if (embed->container) embed->container->ResizeEmbed(); KMutexRelease(&windowManager.mutex); } else if (property == ES_WINDOW_PROPERTY_EMBED_OWNER) { SYSCALL_HANDLE(argument1, KERNEL_OBJECT_PROCESS, process, Process); OpenHandleToObject(embed, KERNEL_OBJECT_EMBEDDED_WINDOW); KMutexAcquire(&windowManager.mutex); embed->SetEmbedOwner(process); KMutexRelease(&windowManager.mutex); SYSCALL_RETURN(process->handleTable.OpenHandle(embed, 0, KERNEL_OBJECT_EMBEDDED_WINDOW), false); } else { SYSCALL_RETURN(ES_FATAL_ERROR_OUT_OF_RANGE, true); } SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_WINDOW_REDRAW) { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_WINDOW, window, Window); KMutexAcquire(&windowManager.mutex); window->Update(nullptr, true); GraphicsUpdateScreen(); KMutexRelease(&windowManager.mutex); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_WINDOW_SET_BITS) { SYSCALL_HANDLE_2(argument0, (KernelObjectType) (KERNEL_OBJECT_WINDOW | KERNEL_OBJECT_EMBEDDED_WINDOW), _window); EsRectangle region; SYSCALL_READ(®ion, argument1, sizeof(EsRectangle)); if (!ES_RECT_VALID(region)) { SYSCALL_RETURN(ES_SUCCESS, false); } if (region.l < 0 || region.r > (int32_t) graphics.width * 2 || region.t < 0 || region.b > (int32_t) graphics.height * 2 || region.l >= region.r || region.t >= region.b) { SYSCALL_RETURN(ES_SUCCESS, false); } bool isEmbed = _window.type == KERNEL_OBJECT_EMBEDDED_WINDOW; Window *window = isEmbed ? ((EmbeddedWindow *) _window.object)->container : ((Window *) _window.object); if (!window || (isEmbed && currentProcess != ((EmbeddedWindow *) _window.object)->owner) || window->closed) { SYSCALL_RETURN(ES_SUCCESS, false); } Surface *surface = &window->surface; EsRectangle insets = window->embedInsets; if (isEmbed) { region = Translate(region, insets.l, insets.t); } SYSCALL_BUFFER(argument2, Width(region) * Height(region) * 4, 1, false); KMutexAcquire(&windowManager.mutex); bool resizeQueued = false; if (argument3 == WINDOW_SET_BITS_AFTER_RESIZE && windowManager.resizeWindow == window) { if (isEmbed) windowManager.resizeReceivedBitsFromEmbed = true; else windowManager.resizeReceivedBitsFromContainer = true; if (windowManager.resizeReceivedBitsFromContainer && windowManager.resizeReceivedBitsFromEmbed) { // Resize complete. resizeQueued = windowManager.resizeQueued; windowManager.resizeQueued = false; windowManager.resizeWindow = nullptr; windowManager.resizeSlow = KGetTimeInMs() - windowManager.resizeStartTimeStampMs >= RESIZE_SLOW_THRESHOLD || windowManager.inspectorWindowCount /* HACK anti-flicker logic interfers with the inspector's logging */; // EsPrint("Resize complete in %dms%z.\n", KGetTimeInMs() - windowManager.resizeStartTimeStampMs, windowManager.resizeSlow ? " (slow)" : ""); } } uintptr_t stride = Width(region) * 4; EsRectangle clippedRegion = EsRectangleIntersection(region, ES_RECT_2S(surface->width, surface->height)); EsRectangle directUpdateSubRegion; if (window->style == ES_WINDOW_CONTAINER && !isEmbed) { directUpdateSubRegion = ES_RECT_4(0, window->width, 0, insets.t); } else if (window->style == ES_WINDOW_CONTAINER && isEmbed) { directUpdateSubRegion = ES_RECT_4(insets.l, window->width - insets.r, insets.t, window->height - insets.b); } else { directUpdateSubRegion = ES_RECT_4(0, window->width, 0, window->height); } bool didDirectUpdate = false; if (argument3 != WINDOW_SET_BITS_AFTER_RESIZE && EsRectangleEquals(region, EsRectangleIntersection(region, directUpdateSubRegion))) { didDirectUpdate = window->UpdateDirect((K_USER_BUFFER uint32_t *) argument2, stride, clippedRegion); } #define SET_BITS_REGION(...) { \ EsRectangle subRegion = EsRectangleIntersection(clippedRegion, ES_RECT_4(__VA_ARGS__)); \ if (ES_RECT_VALID(subRegion)) { surface->SetBits((K_USER_BUFFER const uint8_t *) argument2 \ + stride * (subRegion.t - clippedRegion.t) + 4 * (subRegion.l - clippedRegion.l), stride, subRegion); } } if (window->style == ES_WINDOW_CONTAINER && !isEmbed) { SET_BITS_REGION(0, window->width, 0, insets.t); SET_BITS_REGION(0, insets.l, insets.t, window->height - insets.b); SET_BITS_REGION(window->width - insets.r, window->width, insets.t, window->height - insets.b); SET_BITS_REGION(0, window->width, window->height - insets.b, window->height); } else if (window->style == ES_WINDOW_CONTAINER && isEmbed) { SET_BITS_REGION(insets.l, window->width - insets.r, insets.t, window->height - insets.b); } else { SET_BITS_REGION(0, window->width, 0, window->height); } window->Update(®ion, !didDirectUpdate); if (!didDirectUpdate) { GraphicsUpdateScreen(); } if (resizeQueued) { window->Move(windowManager.resizeQueuedRectangle, ES_WINDOW_MOVE_DYNAMIC); } KMutexRelease(&windowManager.mutex); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_EVENT_CREATE) { KEvent *event = (KEvent *) EsHeapAllocate(sizeof(KEvent), true, K_FIXED); if (!event) SYSCALL_RETURN(ES_ERROR_INSUFFICIENT_RESOURCES, false); event->handles = 1; event->autoReset = argument0; SYSCALL_RETURN(currentProcess->handleTable.OpenHandle(event, 0, KERNEL_OBJECT_EVENT), false); } SYSCALL_IMPLEMENT(ES_SYSCALL_HANDLE_CLOSE) { if (!currentProcess->handleTable.CloseHandle(argument0)) { SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_HANDLE, true); } SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_THREAD_TERMINATE) { bool self = false; { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_THREAD, thread, Thread); if (thread == currentThread) self = true; else ThreadTerminate(thread); } if (self) ThreadTerminate(currentThread); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_PROCESS_TERMINATE) { // TODO Prevent the termination of the kernel/desktop. bool self = false; { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_PROCESS, process, Process); if (process == currentProcess) self = true; else ProcessTerminate(process, argument1); } if (self) ProcessTerminate(currentProcess, argument1); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_THREAD_CREATE) { EsThreadInformation thread; EsMemoryZero(&thread, sizeof(EsThreadInformation)); Thread *threadObject = ThreadSpawn("Syscall", argument0, argument3, SPAWN_THREAD_USERLAND, currentProcess, argument1); if (!threadObject) { SYSCALL_RETURN(ES_ERROR_INSUFFICIENT_RESOURCES, false); } thread.tid = threadObject->id; thread.handle = currentProcess->handleTable.OpenHandle(threadObject, 0, KERNEL_OBJECT_THREAD); SYSCALL_WRITE(argument2, &thread, sizeof(EsThreadInformation)); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_MEMORY_MAP_OBJECT) { SYSCALL_HANDLE_2(argument0, (KernelObjectType) (KERNEL_OBJECT_SHMEM | KERNEL_OBJECT_NODE), object); if (((argument3 & ES_MEMORY_MAP_OBJECT_READ_WRITE) ? 1 : 0) + ((argument3 & ES_MEMORY_MAP_OBJECT_READ_ONLY) ? 1 : 0) + ((argument3 & ES_MEMORY_MAP_OBJECT_COPY_ON_WRITE) ? 1 : 0) != 1) { SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_FILE_ACCESS, true); } if (object.type == KERNEL_OBJECT_SHMEM) { MMSharedRegion *region = (MMSharedRegion *) object.object; if (argument2 == ES_MEMORY_MAP_OBJECT_ALL) { argument2 = region->sizeBytes; } if ((argument3 == ES_MEMORY_MAP_OBJECT_READ_WRITE && (~object.flags & ES_SHARED_MEMORY_READ_WRITE)) || argument3 == ES_MEMORY_MAP_OBJECT_COPY_ON_WRITE) { SYSCALL_RETURN(ES_FATAL_ERROR_INSUFFICIENT_PERMISSIONS, true); } uint32_t flags = MM_REGION_USER | ((argument3 & ES_MEMORY_MAP_OBJECT_READ_ONLY) ? MM_REGION_READ_ONLY : 0); uintptr_t address = (uintptr_t) MMMapShared(currentVMM, region, argument1 /* offset */, argument2 /* bytes */, flags); SYSCALL_RETURN(address, false); } else if (object.type == KERNEL_OBJECT_NODE) { KNode *file = (KNode *) object.object; if (file->directoryEntry->type != ES_NODE_FILE) SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_NODE_TYPE, true); if (argument3 == ES_MEMORY_MAP_OBJECT_READ_WRITE) { if (!(object.flags & (ES_FILE_WRITE_SHARED | ES_FILE_WRITE))) { SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_FILE_ACCESS, true); } } else { if (!(object.flags & (ES_FILE_READ | ES_FILE_READ_SHARED))) { SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_FILE_ACCESS, true); } } if (argument2 == ES_MEMORY_MAP_OBJECT_ALL) { argument2 = file->directoryEntry->totalSize; } uintptr_t address = (uintptr_t) MMMapFile(currentVMM, (FSFile *) file, argument1, argument2, argument3, nullptr, 0, MM_REGION_USER); SYSCALL_RETURN(address, false); } KernelPanic("ES_SYSCALL_MEMORY_MAP_OBJECT - Unhandled case.\n"); SYSCALL_RETURN(0, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_CONSTANT_BUFFER_CREATE) { if (argument2 > SYSCALL_BUFFER_LIMIT) SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_BUFFER, true); SYSCALL_HANDLE(argument1, KERNEL_OBJECT_PROCESS, process, Process); if (argument2) { SYSCALL_BUFFER(argument0, argument2, 1, false); SYSCALL_RETURN(ConstantBufferCreate((void *) argument0, argument2, process), false); } else { SYSCALL_RETURN(ConstantBufferCreate(nullptr, 0, process), false); } } SYSCALL_IMPLEMENT(ES_SYSCALL_HANDLE_SHARE) { SYSCALL_HANDLE_2(argument0, HANDLE_SHARE_TYPE_MASK, share); SYSCALL_HANDLE(argument1, KERNEL_OBJECT_PROCESS, process, Process); SYSCALL_RETURN(HandleShare(share, process, argument2), false); } SYSCALL_IMPLEMENT(ES_SYSCALL_VOLUME_GET_INFORMATION) { if (~currentProcess->permissions & ES_PERMISSION_GET_VOLUME_INFORMATION) { SYSCALL_RETURN(ES_ERROR_PERMISSION_NOT_GRANTED, false); } SYSCALL_HANDLE(argument0, KERNEL_OBJECT_NODE, node, KNode); KFileSystem *fileSystem = node->fileSystem; EsVolumeInformation information; EsMemoryZero(&information, sizeof(EsVolumeInformation)); EsMemoryCopy(information.label, fileSystem->name, sizeof(fileSystem->name)); information.labelBytes = fileSystem->nameBytes; information.driveType = fileSystem->block->information.driveType; information.spaceUsed = fileSystem->spaceUsed; information.spaceTotal = fileSystem->spaceTotal; information.id = fileSystem->objectID; information.flags = fileSystem->volumeFlags; information.installationIdentifier = fileSystem->installationIdentifier; information.identifier = fileSystem->identifier; SYSCALL_WRITE(argument1, &information, sizeof(EsVolumeInformation)); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_NODE_OPEN) { size_t pathLength = (size_t) argument1; uint64_t flags = (uint64_t) argument2; flags &= ~ES__NODE_FROM_WRITE_EXCLUSIVE | ES__NODE_NO_WRITE_BASE; bool needWritePermission = flags & (ES_FILE_WRITE | ES_FILE_WRITE_SHARED | ES__NODE_DIRECTORY_WRITE); char *path; if (argument1 > K_MAX_PATH) SYSCALL_RETURN(ES_FATAL_ERROR_OUT_OF_RANGE, true); SYSCALL_READ_HEAP(path, argument0, argument1); _EsNodeInformation information; SYSCALL_READ(&information, argument3, sizeof(_EsNodeInformation)); SYSCALL_HANDLE_2(information.handle, (KernelObjectType) (KERNEL_OBJECT_NODE | KERNEL_OBJECT_DEVICE), _directory); KNode *directory = nullptr; uint64_t directoryFlags = 0; if (_directory.type == KERNEL_OBJECT_DEVICE) { KDevice *device = (KDevice *) _directory.object; if (device->type == ES_DEVICE_FILE_SYSTEM) { KFileSystem *fileSystem = (KFileSystem *) device; directory = fileSystem->rootDirectory; directoryFlags = ES__NODE_DIRECTORY_WRITE; } else { SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_NODE_TYPE, true); } } else if (_directory.type == KERNEL_OBJECT_NODE) { directory = (KNode *) _directory.object; directoryFlags = _directory.flags; } else { EsAssert(false); } if (directory->directoryEntry->type != ES_NODE_DIRECTORY) { SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_NODE_TYPE, true); } if ((~directoryFlags & ES__NODE_DIRECTORY_WRITE) && needWritePermission) { SYSCALL_RETURN(ES_ERROR_PERMISSION_NOT_GRANTED, false); } if (~directoryFlags & ES__NODE_DIRECTORY_WRITE) { flags |= ES__NODE_NO_WRITE_BASE; } KNodeInformation _information = FSNodeOpen(path, pathLength, flags, directory); if (!_information.node) { SYSCALL_RETURN(_information.error, false); } if (flags & ES_FILE_WRITE) { // Mark this handle as being the exclusive writer for this file. // This way, when the handle is used, OpenHandleToObject succeeds. // The exclusive writer flag will only be removed from the file where countWrite drops to zero. flags |= ES__NODE_FROM_WRITE_EXCLUSIVE; } EsMemoryZero(&information, sizeof(_EsNodeInformation)); information.type = _information.node->directoryEntry->type; information.fileSize = _information.node->directoryEntry->totalSize; information.directoryChildren = _information.node->directoryEntry->directoryChildren; information.contentType = _information.node->directoryEntry->contentType; information.handle = currentProcess->handleTable.OpenHandle(_information.node, flags, KERNEL_OBJECT_NODE); SYSCALL_WRITE(argument3, &information, sizeof(_EsNodeInformation)); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_NODE_DELETE) { SYSCALL_HANDLE_2(argument0, KERNEL_OBJECT_NODE, handle); KNode *node = (KNode *) handle.object; if (handle.flags & ES__NODE_NO_WRITE_BASE) { SYSCALL_RETURN(ES_ERROR_PERMISSION_NOT_GRANTED, false); } if (node->directoryEntry->type == ES_NODE_FILE && (~handle.flags & ES_FILE_WRITE)) { SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_FILE_ACCESS, true); } if (node->directoryEntry->type == ES_NODE_DIRECTORY || node->directoryEntry->type == ES_NODE_FILE) { SYSCALL_RETURN(FSNodeDelete(node), false); } else { SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_NODE_TYPE, true); } } SYSCALL_IMPLEMENT(ES_SYSCALL_NODE_MOVE) { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_NODE, file, KNode); SYSCALL_HANDLE(argument1, KernelObjectType(KERNEL_OBJECT_NODE | KERNEL_OBJECT_NONE), directory, KNode); char *newPath; if (argument3 > SYSCALL_BUFFER_LIMIT) SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_BUFFER, true); SYSCALL_READ_HEAP(newPath, argument2, argument3); SYSCALL_RETURN(FSNodeMove(file, directory, newPath, (size_t) argument3), false); } SYSCALL_IMPLEMENT(ES_SYSCALL_FILE_READ_SYNC) { if (!argument2) SYSCALL_RETURN(0, false); SYSCALL_HANDLE(argument0, KERNEL_OBJECT_NODE, file, KNode); if (file->directoryEntry->type != ES_NODE_FILE) SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_NODE_TYPE, true); SYSCALL_BUFFER(argument3, argument2, 1, true /* we're writing into this buffer */); size_t result = FSFileReadSync(file, (void *) argument3, argument1, argument2, (_region1->flags & MM_REGION_FILE) ? FS_FILE_ACCESS_USER_BUFFER_MAPPED : 0); SYSCALL_RETURN(result, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_FILE_WRITE_SYNC) { if (!argument2) SYSCALL_RETURN(0, false); SYSCALL_HANDLE_2(argument0, KERNEL_OBJECT_NODE, handle); KNode *file = (KNode *) handle.object; if (file->directoryEntry->type != ES_NODE_FILE) SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_NODE_TYPE, true); SYSCALL_BUFFER(argument3, argument2, 1, false); if (handle.flags & (ES_FILE_WRITE_SHARED | ES_FILE_WRITE)) { size_t result = FSFileWriteSync(file, (void *) argument3, argument1, argument2, (_region1->flags & MM_REGION_FILE) ? FS_FILE_ACCESS_USER_BUFFER_MAPPED : 0); SYSCALL_RETURN(result, false); } else { SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_FILE_ACCESS, true); } } SYSCALL_IMPLEMENT(ES_SYSCALL_FILE_GET_SIZE) { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_NODE, file, KNode); if (file->directoryEntry->type != ES_NODE_FILE) SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_NODE_TYPE, true); SYSCALL_RETURN(file->directoryEntry->totalSize, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_FILE_RESIZE) { SYSCALL_HANDLE_2(argument0, KERNEL_OBJECT_NODE, handle); KNode *file = (KNode *) handle.object; if (file->directoryEntry->type != ES_NODE_FILE) SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_NODE_TYPE, true); if (handle.flags & (ES_FILE_WRITE_SHARED | ES_FILE_WRITE)) { SYSCALL_RETURN(FSFileResize(file, argument1), false); } else { SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_FILE_ACCESS, true); } } SYSCALL_IMPLEMENT(ES_SYSCALL_EVENT_SET) { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_EVENT, event, KEvent); KEventSet(event, true); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_EVENT_RESET) { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_EVENT, event, KEvent); KEventReset(event); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_SLEEP) { KTimer timer = {}; #ifdef ES_BITS_64 KTimerSet(&timer, (argument0 << 32) | argument1); #else KTimerSet(&timer, argument1); #endif currentThread->terminatableState = THREAD_USER_BLOCK_REQUEST; KEventWait(&timer.event, ES_WAIT_NO_TIMEOUT); currentThread->terminatableState = THREAD_IN_SYSCALL; KTimerRemove(&timer); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_WAIT) { if (argument1 >= ES_MAX_WAIT_COUNT - 1 /* leave room for timeout timer */) { SYSCALL_RETURN(ES_FATAL_ERROR_OUT_OF_RANGE, true); } EsHandle handles[ES_MAX_WAIT_COUNT]; KEvent *events[ES_MAX_WAIT_COUNT]; Handle _objects[ES_MAX_WAIT_COUNT]; uint8_t status[ES_MAX_WAIT_COUNT]; bool handleErrors = false; uintptr_t waitReturnValue; SYSCALL_READ(handles, argument0, argument1 * sizeof(EsHandle)); for (uintptr_t i = 0; i < argument1; i++) { KernelObjectType typeMask = (KernelObjectType) (KERNEL_OBJECT_PROCESS | KERNEL_OBJECT_THREAD | KERNEL_OBJECT_EVENT); status[i] = currentProcess->handleTable.ResolveHandle(&_objects[i], handles[i], typeMask); if (status[i] == RESOLVE_HANDLE_FAILED) { handleErrors = true; continue; } void *object = _objects[i].object; switch (_objects[i].type) { case KERNEL_OBJECT_PROCESS: { events[i] = &((Process *) object)->killedEvent; } break; case KERNEL_OBJECT_THREAD: { events[i] = &((Thread *) object)->killedEvent; } break; case KERNEL_OBJECT_EVENT: { events[i] = (KEvent *) object; } break; default: { KernelPanic("DoSyscall - Unexpected wait object type %d.\n", _objects[i].type); } break; } } if (!handleErrors) { size_t waitObjectCount = argument1; KTimer timer = {}; if (argument2 != (uintptr_t) ES_WAIT_NO_TIMEOUT) { KTimerSet(&timer, argument2); events[waitObjectCount++] = &timer.event; } currentThread->terminatableState = THREAD_USER_BLOCK_REQUEST; waitReturnValue = KEventWaitMultiple(events, waitObjectCount); currentThread->terminatableState = THREAD_IN_SYSCALL; if (waitReturnValue == argument1) { waitReturnValue = ES_ERROR_TIMEOUT_REACHED; } if (argument2 != (uintptr_t) ES_WAIT_NO_TIMEOUT) { KTimerRemove(&timer); } } for (uintptr_t i = 0; i < argument1; i++) { if (status[i] == RESOLVE_HANDLE_NORMAL) { CloseHandleToObject(_objects[i].object, _objects[i].type, _objects[i].flags); } } if (handleErrors) { SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_HANDLE, true); } else { SYSCALL_RETURN(waitReturnValue, false); } } SYSCALL_IMPLEMENT(ES_SYSCALL_WINDOW_SET_CURSOR) { SYSCALL_HANDLE_2(argument0, (KernelObjectType) (KERNEL_OBJECT_WINDOW | KERNEL_OBJECT_EMBEDDED_WINDOW), _window); uint32_t imageWidth = (argument2 >> 16) & 0xFF; uint32_t imageHeight = (argument2 >> 24) & 0xFF; SYSCALL_BUFFER(argument1, imageWidth * imageHeight * 4, 1, false); KMutexAcquire(&windowManager.mutex); Window *window; bool ignore = false; if (_window.type == KERNEL_OBJECT_EMBEDDED_WINDOW) { EmbeddedWindow *embeddedWindow = (EmbeddedWindow *) _window.object; window = embeddedWindow->container; ignore = !window || !window->hoveringOverEmbed || embeddedWindow->owner != currentProcess; } else { window = (Window *) _window.object; ignore = window->hoveringOverEmbed; } bool changedCursor = false; bool different = argument1 != windowManager.cursorID || windowManager.cursorShadow != !!(argument3 & (1 << 30)); if (!ignore && !window->closed && different && !windowManager.eyedropping && (windowManager.hoverWindow == window || !windowManager.hoverWindow)) { windowManager.cursorID = argument1; windowManager.cursorImageOffsetX = (int8_t) ((argument2 >> 0) & 0xFF) - CURSOR_PADDING_L; windowManager.cursorImageOffsetY = (int8_t) ((argument2 >> 8) & 0xFF) - CURSOR_PADDING_T; windowManager.cursorShadow = argument3 & (1 << 30); int width = imageWidth + CURSOR_PADDING_L + CURSOR_PADDING_R; int height = imageHeight + CURSOR_PADDING_T + CURSOR_PADDING_B; if (windowManager.cursorSurface.Resize(width, height) && windowManager.cursorSwap.Resize(width, height) && windowManager.cursorTemporary.Resize(width, height)) { EsMemoryZero(windowManager.cursorSurface.bits, windowManager.cursorSurface.width * windowManager.cursorSurface.height * 4); windowManager.cursorSurface.SetBits((K_USER_BUFFER const void *) argument1, argument3 & 0xFFFFFF, ES_RECT_4PD(CURSOR_PADDING_L, CURSOR_PADDING_T, imageWidth, imageHeight)); if (windowManager.cursorShadow) { windowManager.cursorSurface.CreateCursorShadow(&windowManager.cursorTemporary); } } windowManager.changedCursorImage = true; changedCursor = true; } KMutexRelease(&windowManager.mutex); SYSCALL_RETURN(changedCursor, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_WINDOW_MOVE) { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_WINDOW, window, Window); bool success = true; EsRectangle rectangle; if (argument1) { SYSCALL_READ(&rectangle, argument1, sizeof(EsRectangle)); } else { EsMemoryZero(&rectangle, sizeof(EsRectangle)); } KMutexAcquire(&windowManager.mutex); if (argument3 & ES_WINDOW_MOVE_HIDDEN) { windowManager.HideWindow(window); } else { window->Move(rectangle, argument3); } if (argument3 & ES_WINDOW_MOVE_UPDATE_SCREEN) { GraphicsUpdateScreen(); } KMutexRelease(&windowManager.mutex); SYSCALL_RETURN(success ? ES_SUCCESS : ES_ERROR_INVALID_DIMENSIONS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_WINDOW_TRANSFER_PRESS) { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_WINDOW, oldWindow, Window); SYSCALL_HANDLE(argument1, KERNEL_OBJECT_WINDOW, newWindow, Window); KMutexAcquire(&windowManager.mutex); if (windowManager.pressedWindow == oldWindow) { windowManager.pressedWindow = newWindow; newWindow->hoveringOverEmbed = false; } KMutexRelease(&windowManager.mutex); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_WINDOW_FIND_BY_POINT) { SYSCALL_PERMISSION(ES_PERMISSION_SCREEN_MODIFY); KMutexAcquire(&windowManager.mutex); Window *window = windowManager.FindWindowAtPosition(argument1 /* x */, argument2 /* y */, argument3 /* exclude */); EsObjectID id = window ? window->id : 0; KMutexRelease(&windowManager.mutex); SYSCALL_WRITE(argument0, &id, sizeof(id)); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_CURSOR_POSITION_GET) { EsPoint point = ES_POINT(windowManager.cursorX, windowManager.cursorY); SYSCALL_WRITE(argument0, &point, sizeof(EsPoint)); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_CURSOR_POSITION_SET) { KMutexAcquire(&windowManager.mutex); // Only allow the cursor position to be modified by the process // if it owns the window that is currently being pressed. bool allowed = false; if (windowManager.pressedWindow) { if (windowManager.pressedWindow->embed) { if (windowManager.pressedWindow->embed->owner == currentProcess) { allowed = true; } } if (windowManager.pressedWindow->owner == currentProcess) { allowed = true; } } if (allowed) { // Preseve the precise offset. int32_t offsetX = windowManager.cursorXPrecise - windowManager.cursorX * K_CURSOR_MOVEMENT_SCALE; int32_t offsetY = windowManager.cursorYPrecise - windowManager.cursorY * K_CURSOR_MOVEMENT_SCALE; windowManager.cursorX = argument0; windowManager.cursorY = argument1; windowManager.cursorXPrecise = argument0 * K_CURSOR_MOVEMENT_SCALE + offsetX; windowManager.cursorYPrecise = argument1 * K_CURSOR_MOVEMENT_SCALE + offsetY; } KMutexRelease(&windowManager.mutex); SYSCALL_RETURN(allowed ? ES_SUCCESS : ES_ERROR_PERMISSION_NOT_GRANTED, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_CURSOR_PROPERTIES_SET) { SYSCALL_PERMISSION(ES_PERMISSION_SCREEN_MODIFY); KMutexAcquire(&windowManager.mutex); windowManager.cursorProperties = argument0; KMutexRelease(&windowManager.mutex); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_GAME_CONTROLLER_STATE_POLL) { EsGameControllerState gameControllers[ES_GAME_CONTROLLER_MAX_COUNT]; size_t gameControllerCount; KMutexAcquire(&windowManager.deviceMutex); gameControllerCount = windowManager.gameControllerCount; EsMemoryCopy(gameControllers, windowManager.gameControllers, sizeof(EsGameControllerState) * gameControllerCount); KMutexRelease(&windowManager.deviceMutex); SYSCALL_WRITE(argument0, gameControllers, sizeof(EsGameControllerState) * gameControllerCount); SYSCALL_RETURN(gameControllerCount, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_WINDOW_GET_BOUNDS) { SYSCALL_HANDLE_2(argument0, (KernelObjectType) (KERNEL_OBJECT_WINDOW | KERNEL_OBJECT_EMBEDDED_WINDOW), _window); EsRectangle rectangle; EsMemoryZero(&rectangle, sizeof(EsRectangle)); KMutexAcquire(&windowManager.mutex); if (_window.type == KERNEL_OBJECT_WINDOW) { Window *window = (Window *) _window.object; rectangle.l = window->position.x; rectangle.t = window->position.y; rectangle.r = window->position.x + window->width; rectangle.b = window->position.y + window->height; } else if (_window.type == KERNEL_OBJECT_EMBEDDED_WINDOW) { EmbeddedWindow *embed = (EmbeddedWindow *) _window.object; Window *window = embed->container; if (window) { rectangle.l = window->position.x + window->embedInsets.l; rectangle.t = window->position.y + window->embedInsets.t; rectangle.r = window->position.x + window->width - window->embedInsets.r; rectangle.b = window->position.y + window->height - window->embedInsets.b; } } KMutexRelease(&windowManager.mutex); SYSCALL_WRITE(argument1, &rectangle, sizeof(EsRectangle)); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_PROCESS_PAUSE) { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_PROCESS, process, Process); ProcessPause(process, (bool) argument1); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_PROCESS_CRASH) { KernelLog(LOG_ERROR, "Syscall", "process crash request", "Process crash request, reason %d\n", argument0); SYSCALL_RETURN(argument0, true); } SYSCALL_IMPLEMENT(ES_SYSCALL_MESSAGE_POST) { SYSCALL_HANDLE(argument2, KERNEL_OBJECT_PROCESS, process, Process); _EsMessageWithObject message; SYSCALL_READ(&message.message, argument0, sizeof(EsMessage)); message.object = (void *) argument1; if (process->messageQueue.SendMessage(&message)) { SYSCALL_RETURN(ES_SUCCESS, false); } else { SYSCALL_RETURN(ES_ERROR_MESSAGE_QUEUE_FULL, false); } } SYSCALL_IMPLEMENT(ES_SYSCALL_THREAD_GET_ID) { SYSCALL_HANDLE_2(argument0, (KernelObjectType) (KERNEL_OBJECT_THREAD | KERNEL_OBJECT_PROCESS), object); if (object.type == KERNEL_OBJECT_THREAD) { SYSCALL_WRITE(argument1, &((Thread *) object.object)->id, sizeof(EsObjectID)); } else if (object.type == KERNEL_OBJECT_PROCESS) { Process *process = (Process *) object.object; EsObjectID id = process->id; #ifdef ENABLE_POSIX_SUBSYSTEM if (currentThread->posixData && currentThread->posixData->forkProcess) { id = currentThread->posixData->forkProcess->id; } #endif SYSCALL_WRITE(argument1, &id, sizeof(EsObjectID)); } SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_THREAD_STACK_SIZE) { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_THREAD, thread, Thread); SYSCALL_WRITE(argument1, &thread->userStackCommit, sizeof(thread->userStackCommit)); SYSCALL_WRITE(argument2, &thread->userStackReserve, sizeof(thread->userStackReserve)); bool success = true; if (argument3) { MMRegion *region = MMFindAndPinRegion(currentVMM, thread->userStackBase, thread->userStackReserve); KMutexAcquire(¤tVMM->reserveMutex); if (argument3 >= K_PAGE_SIZE /* see ES_SYSCALL_THREAD_SET_TIMER_ADJUST_ADDRESS */ && thread->userStackCommit <= argument3 && argument3 <= thread->userStackReserve && !(argument3 & (K_PAGE_BITS - 1)) && region) { #ifdef K_ARCH_STACK_GROWS_DOWN success = MMCommitRange(currentVMM, region, (thread->userStackReserve - argument3) / K_PAGE_SIZE, argument3 / K_PAGE_SIZE); #else success = MMCommitRange(currentVMM, region, 0, argument3 / K_PAGE_SIZE); #endif } else { success = false; } if (success) thread->userStackCommit = argument3; KMutexRelease(¤tVMM->reserveMutex); if (region) MMUnpinRegion(currentVMM, region); } SYSCALL_RETURN(success ? ES_SUCCESS : ES_ERROR_INSUFFICIENT_RESOURCES, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_DIRECTORY_ENUMERATE) { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_NODE, node, KNode); if (node->directoryEntry->type != ES_NODE_DIRECTORY) SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_NODE_TYPE, true); if (argument2 > SYSCALL_BUFFER_LIMIT / sizeof(EsDirectoryChild)) SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_BUFFER, true); SYSCALL_BUFFER(argument1, argument2 * sizeof(EsDirectoryChild), 1, true /* write */); SYSCALL_RETURN(FSDirectoryEnumerate(node, (K_USER_BUFFER EsDirectoryChild *) argument1, argument2), false); } SYSCALL_IMPLEMENT(ES_SYSCALL_FILE_CONTROL) { SYSCALL_HANDLE_2(argument0, KERNEL_OBJECT_NODE, handle); KNode *file = (KNode *) handle.object; if (file->directoryEntry->type != ES_NODE_FILE) { SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_NODE_TYPE, true); } EsError error = ES_ERROR_UNSUPPORTED; if (argument1 == ES_FILE_CONTROL_FLUSH) { if ((handle.flags & (ES_FILE_WRITE_SHARED | ES_FILE_WRITE)) == 0) { SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_FILE_ACCESS, true); } error = FSFileControlFlush(file); } else if (argument1 == ES_FILE_CONTROL_SET_CONTENT_TYPE) { if ((handle.flags & (ES_FILE_WRITE_SHARED | ES_FILE_WRITE)) == 0) { SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_FILE_ACCESS, true); } EsUniqueIdentifier identifier; SYSCALL_READ(&identifier, argument2, sizeof(identifier)); error = FSFileControlSetContentType(file, identifier); } else if (argument1 == ES_FILE_CONTROL_GET_CONTENT_TYPE) { EsUniqueIdentifier identifier; KWriterLockTake(&file->writerLock, K_LOCK_SHARED); if (file->fileSystem->flags & ES_VOLUME_STORES_CONTENT_TYPE) { identifier = file->directoryEntry->contentType; error = ES_SUCCESS; } KWriterLockReturn(&file->writerLock, K_LOCK_SHARED); if (error == ES_SUCCESS) { SYSCALL_WRITE(argument2, &identifier, sizeof(EsUniqueIdentifier)); } } SYSCALL_RETURN(error, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_BATCH) { EsBatchCall *calls; if (argument1 > SYSCALL_BUFFER_LIMIT / sizeof(EsBatchCall)) SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_BUFFER, true); SYSCALL_READ_HEAP(calls, argument0, sizeof(EsBatchCall) * argument1); size_t count = argument1; for (uintptr_t i = 0; i < count; i++) { EsBatchCall call = calls[i]; bool fatal = false; uintptr_t _returnValue = calls[i].returnValue = DoSyscall(call.index, call.argument0, call.argument1, call.argument2, call.argument3, true /* batched */, &fatal, userStackPointer); if (fatal) SYSCALL_RETURN(_returnValue, true); if (calls[i].stopBatchIfError && ES_CHECK_ERROR(_returnValue)) break; if (currentThread->terminating) break; } SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_CONSTANT_BUFFER_READ) { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_CONSTANT_BUFFER, buffer, ConstantBuffer); if (!argument1) SYSCALL_RETURN(buffer->bytes, false); SYSCALL_WRITE(argument1, buffer + 1, buffer->bytes); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_PROCESS_GET_STATE) { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_PROCESS, process, Process); EsProcessState state; EsMemoryZero(&state, sizeof(EsProcessState)); state.crashReason = process->crashReason; state.id = process->id; state.executableState = process->executableState; state.flags = (process->allThreadsTerminated ? ES_PROCESS_STATE_ALL_THREADS_TERMINATED : 0) | (process->preventNewThreads ? ES_PROCESS_STATE_TERMINATING : 0) | (process->crashed ? ES_PROCESS_STATE_CRASHED : 0) #ifdef PAUSE_ON_USERLAND_CRASH | (process->pausedFromCrash ? ES_PROCESS_STATE__PAUSED_FROM_CRASH : 0) #endif | (process->messageQueue.pinged ? ES_PROCESS_STATE__PINGED : 0); SYSCALL_WRITE(argument1, &state, sizeof(EsProcessState)); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_SHUTDOWN) { SYSCALL_PERMISSION(ES_PERMISSION_SHUTDOWN); shutdownAction = argument0; KEventSet(&shutdownEvent, true); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_WINDOW_GET_ID) { SYSCALL_HANDLE_2(argument0, (KernelObjectType) (KERNEL_OBJECT_WINDOW | KERNEL_OBJECT_EMBEDDED_WINDOW), _window); if (_window.type == KERNEL_OBJECT_WINDOW) { SYSCALL_RETURN(((Window *) _window.object)->id, false); } else { SYSCALL_RETURN(((EmbeddedWindow *) _window.object)->id, false); } } SYSCALL_IMPLEMENT(ES_SYSCALL_YIELD_SCHEDULER) { ProcessorFakeTimerInterrupt(); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_SYSTEM_TAKE_SNAPSHOT) { SYSCALL_PERMISSION(ES_PERMISSION_TAKE_SYSTEM_SNAPSHOT); int type = argument0; void *buffer = nullptr; size_t bufferSize = 0; EsDefer(EsHeapFree(buffer, 0, K_FIXED)); switch (type) { case ES_SYSTEM_SNAPSHOT_PROCESSES: { KMutexAcquire(&scheduler.allProcessesMutex); bufferSize = sizeof(EsSnapshotProcesses) + sizeof(EsSnapshotProcessesItem) * scheduler.allProcesses.count; buffer = EsHeapAllocate(bufferSize, true, K_FIXED); if (!buffer) { KMutexRelease(&scheduler.allProcessesMutex); SYSCALL_RETURN(ES_ERROR_INSUFFICIENT_RESOURCES, false); } EsSnapshotProcesses *snapshot = (EsSnapshotProcesses *) buffer; LinkedItem *item = scheduler.allProcesses.firstItem; uintptr_t index = 0; while (item) { Process *process = item->thisItem; snapshot->processes[index].pid = process->id; snapshot->processes[index].memoryUsage = process->vmm->commit * K_PAGE_SIZE; snapshot->processes[index].cpuTimeSlices = process->cpuTimeSlices; snapshot->processes[index].idleTimeSlices = process->idleTimeSlices; snapshot->processes[index].handleCount = process->handleTable.handleCount; snapshot->processes[index].threadCount = process->threads.count; snapshot->processes[index].isKernel = process->type == PROCESS_KERNEL; snapshot->processes[index].nameBytes = EsCStringLength(process->cExecutableName); EsMemoryCopy(snapshot->processes[index].name, process->cExecutableName, snapshot->processes[index].nameBytes); EsAssert(process->handles); item = item->nextItem, index++; } EsAssert(index == scheduler.allProcesses.count); snapshot->count = scheduler.allProcesses.count; KMutexRelease(&scheduler.allProcessesMutex); } break; default: { SYSCALL_RETURN(ES_FATAL_ERROR_OUT_OF_RANGE, true); } break; } SYSCALL_WRITE(argument1, &bufferSize, sizeof(size_t)); SYSCALL_RETURN(ConstantBufferCreate(buffer, bufferSize, currentProcess), false); } SYSCALL_IMPLEMENT(ES_SYSCALL_PROCESSOR_COUNT) { SYSCALL_RETURN(scheduler.nextProcessorID, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_PROCESS_OPEN) { SYSCALL_PERMISSION(ES_PERMISSION_PROCESS_OPEN); Process *process = ProcessOpen(argument0); if (process) { SYSCALL_RETURN(currentProcess->handleTable.OpenHandle(process, 0, KERNEL_OBJECT_PROCESS), false); } else { SYSCALL_RETURN(ES_INVALID_HANDLE, false); } } SYSCALL_IMPLEMENT(ES_SYSCALL_THREAD_SET_TLS) { currentThread->tlsAddress = argument0; // Set this first, otherwise we could get pre-empted and restore without TLS set. ProcessorSetThreadStorage(argument0); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_THREAD_SET_TIMER_ADJUST_ADDRESS) { #ifdef K_ARCH_STACK_GROWS_DOWN uintptr_t page = currentThread->userStackBase + currentThread->userStackReserve - K_PAGE_SIZE; #else uintptr_t page = currentThread->userStackBase; #endif if (argument0 >= page && argument0 <= page + K_PAGE_SIZE - sizeof(uint64_t)) { currentThread->timerAdjustAddress = argument0; SYSCALL_RETURN(ES_SUCCESS, false); } else { SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_MEMORY_REGION, true); } } SYSCALL_IMPLEMENT(ES_SYSCALL_PROCESS_GET_TLS) { SYSCALL_RETURN(currentThread->tlsAddress, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_SCREEN_GET_BITS) { SYSCALL_PERMISSION(ES_PERMISSION_SCREEN_MODIFY); EsRectangle rectangle; SYSCALL_READ(&rectangle, argument1, sizeof(EsRectangle)); SYSCALL_BUFFER(argument2, Width(rectangle) * Height(rectangle) * 4, 1, false); KMutexAcquire(&windowManager.mutex); EsRectangle source = EsRectangleIntersection(rectangle, ES_RECT_2S(graphics.frameBuffer.width, graphics.frameBuffer.height)); uint32_t *bits = (uint32_t *) graphics.frameBuffer.bits; uint32_t *destination = (uint32_t *) argument2; if (ES_RECT_VALID(source)) { for (int32_t y = source.t; y < source.b; y++) { for (int32_t x = source.l; x < source.r; x++) { uint32_t p = bits[x + y * graphics.frameBuffer.stride / sizeof(uint32_t)]; destination[(x - (source.l - rectangle.l)) + (y - (source.t - rectangle.t)) * (rectangle.r - rectangle.l)] = p; } } } KMutexRelease(&windowManager.mutex); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_SCREEN_BOUNDS_GET) { EsRectangle rectangle; EsMemoryZero(&rectangle, sizeof(EsRectangle)); KMutexAcquire(&windowManager.mutex); rectangle.l = 0; rectangle.t = 0; rectangle.r = graphics.width; rectangle.b = graphics.height; KMutexRelease(&windowManager.mutex); SYSCALL_WRITE(argument1, &rectangle, sizeof(EsRectangle)); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_SCREEN_WORK_AREA_SET) { SYSCALL_PERMISSION(ES_PERMISSION_SCREEN_MODIFY); EsRectangle rectangle; SYSCALL_READ(&rectangle, argument1, sizeof(EsRectangle)); windowManager.workArea = rectangle; SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_SCREEN_WORK_AREA_GET) { EsRectangle rectangle = windowManager.workArea; SYSCALL_WRITE(argument1, &rectangle, sizeof(EsRectangle)); SYSCALL_RETURN(ES_SUCCESS, false); } #ifdef ENABLE_POSIX_SUBSYSTEM SYSCALL_IMPLEMENT(ES_SYSCALL_POSIX) { SYSCALL_PERMISSION(ES_PERMISSION_POSIX_SUBSYSTEM); _EsPOSIXSyscall syscall; SYSCALL_READ(&syscall, argument0, sizeof(_EsPOSIXSyscall)); if (syscall.index == 2 /* open */ || syscall.index == 59 /* execve */) { SYSCALL_HANDLE_2(syscall.arguments[4], KERNEL_OBJECT_NODE, node); syscall.arguments[4] = (long) node.object; if (~node.flags & ES__NODE_DIRECTORY_WRITE) SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_HANDLE, true); long result = POSIX::DoSyscall(syscall, userStackPointer); SYSCALL_RETURN(result, false); } else if (syscall.index == 109 /* setpgid */) { SYSCALL_HANDLE_2(syscall.arguments[0], KERNEL_OBJECT_PROCESS, process); syscall.arguments[0] = (long) process.object; long result = POSIX::DoSyscall(syscall, userStackPointer); SYSCALL_RETURN(result, false); } else { long result = POSIX::DoSyscall(syscall, userStackPointer); SYSCALL_RETURN(result, false); } } #else SYSCALL_IMPLEMENT(ES_SYSCALL_POSIX) { SYSCALL_RETURN(ES_FATAL_ERROR_UNKNOWN_SYSCALL, true); } #endif SYSCALL_IMPLEMENT(ES_SYSCALL_PROCESS_GET_STATUS) { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_PROCESS, process, Process); SYSCALL_RETURN(process->exitStatus, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_PIPE_CREATE) { Pipe *pipe = (Pipe *) EsHeapAllocate(sizeof(Pipe), true, K_PAGED); if (!pipe) SYSCALL_RETURN(ES_ERROR_INSUFFICIENT_RESOURCES, false); pipe->writers = pipe->readers = 1; KEventSet(&pipe->canWrite); EsHandle readEnd = currentProcess->handleTable.OpenHandle(pipe, PIPE_READER, KERNEL_OBJECT_PIPE); EsHandle writeEnd = currentProcess->handleTable.OpenHandle(pipe, PIPE_WRITER, KERNEL_OBJECT_PIPE); SYSCALL_WRITE(argument0, &readEnd, sizeof(EsHandle)); SYSCALL_WRITE(argument1, &writeEnd, sizeof(EsHandle)); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_PIPE_READ) { if (!argument2) SYSCALL_RETURN(ES_SUCCESS, false); SYSCALL_HANDLE_2(argument0, KERNEL_OBJECT_PIPE, _pipe); Pipe *pipe = (Pipe *) _pipe.object; if ((~_pipe.flags & PIPE_READER)) SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_FILE_ACCESS, true); if (argument1) { SYSCALL_BUFFER(argument1, argument2, 2, false); SYSCALL_RETURN(pipe->Access((void *) argument1, argument2, false, true), false); } else { // Discard data. SYSCALL_RETURN(pipe->Access(nullptr, argument2, false, true), false); } } SYSCALL_IMPLEMENT(ES_SYSCALL_PIPE_WRITE) { if (!argument2) SYSCALL_RETURN(ES_SUCCESS, false); SYSCALL_HANDLE_2(argument0, KERNEL_OBJECT_PIPE, _pipe); Pipe *pipe = (Pipe *) _pipe.object; if ((~_pipe.flags & PIPE_WRITER)) SYSCALL_RETURN(ES_FATAL_ERROR_INCORRECT_FILE_ACCESS, true); SYSCALL_BUFFER(argument1, argument2, 2, true /* write */); SYSCALL_RETURN(pipe->Access((void *) argument1, argument2, true, true), false); } SYSCALL_IMPLEMENT(ES_SYSCALL_DOMAIN_NAME_RESOLVE) { SYSCALL_PERMISSION(ES_PERMISSION_NETWORKING); if (argument1 > ES_DOMAIN_NAME_MAX_LENGTH) { SYSCALL_RETURN(ES_ERROR_BAD_DOMAIN_NAME, false); } char domainName[ES_DOMAIN_NAME_MAX_LENGTH]; SYSCALL_READ(domainName, argument0, argument1); EsAddress address; EsMemoryZero(&address, sizeof(EsAddress)); KEvent completeEvent = {}; NetDomainNameResolveTask task = {}; task.event = &completeEvent; task.name = domainName; task.nameBytes = (size_t) argument1; task.address = &address; task.callback = NetDomainNameResolve; NetTaskBegin(&task); KEventWait(&completeEvent); if (task.error == ES_SUCCESS) { SYSCALL_WRITE(argument2, &address, sizeof(EsAddress)); } SYSCALL_RETURN(task.error, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_ECHO_REQUEST) { SYSCALL_PERMISSION(ES_PERMISSION_NETWORKING); if (argument1 > ES_ECHO_REQUEST_MAX_LENGTH) { SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_BUFFER, true); } uint8_t data[48]; EsMemoryZero(data, sizeof(data)); SYSCALL_READ(data, argument0, argument1); EsAddress address; SYSCALL_READ(&address, argument2, sizeof(EsAddress)); KEvent completeEvent = {}; NetEchoRequestTask task = {}; task.event = &completeEvent; task.address = &address; task.data = data; task.callback = NetEchoRequest; NetTaskBegin(&task); KEventWait(&completeEvent); if (task.error == ES_SUCCESS) { SYSCALL_WRITE(argument0, data, argument1); } SYSCALL_RETURN(task.error, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_CONNECTION_OPEN) { SYSCALL_PERMISSION(ES_PERMISSION_NETWORKING); EsConnection connection; SYSCALL_READ(&connection, argument0, sizeof(EsConnection)); if (connection.sendBufferBytes < 1024 || connection.receiveBufferBytes < 1024) { SYSCALL_RETURN(ES_ERROR_BUFFER_TOO_SMALL, false); } // TODO Upper limit on buffer sizes? NetConnection *netConnection = NetConnectionOpen(&connection.address, connection.sendBufferBytes, connection.receiveBufferBytes, argument1); if (!netConnection) { SYSCALL_RETURN(ES_ERROR_INSUFFICIENT_RESOURCES, false); } connection.sendBuffer = (uint8_t *) MMMapShared(currentVMM, netConnection->bufferRegion, 0, connection.sendBufferBytes + connection.receiveBufferBytes); connection.receiveBuffer = connection.sendBuffer + connection.sendBufferBytes; if (!connection.sendBuffer) { CloseHandleToObject(netConnection, KERNEL_OBJECT_CONNECTION); SYSCALL_RETURN(ES_ERROR_INSUFFICIENT_RESOURCES, false); } connection.error = ES_SUCCESS; connection.handle = currentProcess->handleTable.OpenHandle(netConnection, 0, KERNEL_OBJECT_CONNECTION); SYSCALL_WRITE(argument0, &connection, sizeof(EsConnection)); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_CONNECTION_POLL) { SYSCALL_BUFFER(argument0, sizeof(EsConnection), 0, true /* write */); EsConnection *connection = (EsConnection *) argument0; SYSCALL_HANDLE(argument3, KERNEL_OBJECT_CONNECTION, netConnection, NetConnection); connection->receiveWritePointer = netConnection->receiveWritePointer; connection->sendReadPointer = netConnection->sendReadPointer; connection->open = netConnection->task.step == TCP_STEP_ESTABLISHED; connection->error = netConnection->task.completed ? netConnection->task.error : ES_SUCCESS; SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_CONNECTION_NOTIFY) { SYSCALL_HANDLE(argument3, KERNEL_OBJECT_CONNECTION, netConnection, NetConnection); NetConnectionNotify(netConnection, argument1, argument2); SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_DEVICE_CONTROL) { SYSCALL_HANDLE(argument0, KERNEL_OBJECT_DEVICE, device, KDevice); EsDeviceControlType type = (EsDeviceControlType) argument1; uintptr_t dp = argument2, dq = argument3; if (device->type == ES_DEVICE_BLOCK) { KBlockDevice *block = (KBlockDevice *) device; if (type == ES_DEVICE_CONTROL_BLOCK_GET_INFORMATION) { SYSCALL_WRITE(dp, &block->information, sizeof(EsBlockDeviceInformation)); } else if (type == ES_DEVICE_CONTROL_BLOCK_READ || type == ES_DEVICE_CONTROL_BLOCK_WRITE) { bool write = type == ES_DEVICE_CONTROL_BLOCK_WRITE; KDMABuffer dmaBuffer = { dp, block->information.sectorSize }; EsFileOffset parameters[2]; SYSCALL_READ(parameters, dq, sizeof(EsFileOffset) * 2); SYSCALL_BUFFER(dp, parameters[1], 1, !write /* whether the buffer will be written to */); // Since the request is not done via the cache, we need to fault the pages in. // TODO Formalize this notion in the memory manager with page locking. if (!MMFaultRange(dp, parameters[1])) { SYSCALL_RETURN(ES_FATAL_ERROR_INVALID_BUFFER, true); } KBlockDeviceAccessRequest request = {}; request.device = block; request.offset = parameters[0]; request.count = parameters[1]; request.operation = write ? K_ACCESS_WRITE : K_ACCESS_READ; request.buffer = &dmaBuffer; request.flags = FS_BLOCK_ACCESS_SOFT_ERRORS; SYSCALL_RETURN(FSBlockDeviceAccess(request), false); } else if (type == ES_DEVICE_CONTROL_BLOCK_DETECT_FS) { KDeviceOpenHandle(block); FSDetectFileSystem(block); // Closes handle. } else { SYSCALL_RETURN(ES_FATAL_ERROR_UNKNOWN_SYSCALL, true); } } else if (device->type == ES_DEVICE_CLOCK) { KClockDevice *clock = (KClockDevice *) device; if (type == ES_DEVICE_CONTROL_CLOCK_READ) { EsDateComponents components; uint64_t linear; EsError error = clock->read(clock, &components, &linear); SYSCALL_WRITE(dp, &components, sizeof(EsDateComponents)); SYSCALL_WRITE(dq, &linear, sizeof(uint64_t)); SYSCALL_RETURN(error, false); } else { SYSCALL_RETURN(ES_FATAL_ERROR_UNKNOWN_SYSCALL, true); } } else if (device->type == ES_DEVICE_FILE_SYSTEM) { KFileSystem *fileSystem = (KFileSystem *) device; if (type == ES_DEVICE_CONTROL_FS_IS_BOOT) { SYSCALL_RETURN(fileSystem->isBootFileSystem ? 1 : 0, false); } else { SYSCALL_RETURN(ES_FATAL_ERROR_UNKNOWN_SYSCALL, true); } } else { SYSCALL_RETURN(ES_FATAL_ERROR_UNKNOWN_SYSCALL, true); } SYSCALL_RETURN(ES_SUCCESS, false); } SYSCALL_IMPLEMENT(ES_SYSCALL_DEBUG_COMMAND) { SYSCALL_PERMISSION(ES_PERMISSION_TAKE_SYSTEM_SNAPSHOT); // TODO Temporary: moved out of the DEBUG_BUILD block. if (argument0 == 3) { extern char kernelLog[]; extern uintptr_t kernelLogPosition; size_t bytes = kernelLogPosition; if (argument2 < bytes) bytes = argument2; EsMemoryCopy((void *) argument1, kernelLog, bytes); SYSCALL_RETURN(bytes, false); } else if (argument0 == 12) { EsMemoryStatistics statistics; EsMemoryZero(&statistics, sizeof(statistics)); statistics.fixedHeapAllocationCount = K_FIXED->allocationsCount; statistics.fixedHeapTotalSize = K_FIXED->size; statistics.coreHeapAllocationCount = K_CORE->allocationsCount; statistics.coreHeapTotalSize = K_CORE->size; statistics.cachedNodes = fs.bootFileSystem->cachedNodes.count; statistics.cachedDirectoryEntries = fs.bootFileSystem->cachedDirectoryEntries.count; statistics.totalSurfaceBytes = graphics.totalSurfaceBytes; statistics.commitPageable = pmm.commitPageable; statistics.commitFixed = pmm.commitFixed; statistics.commitLimit = pmm.commitLimit; statistics.commitFixedLimit = pmm.commitFixedLimit; statistics.commitRemaining = MM_REMAINING_COMMIT(); statistics.maximumObjectCachePages = MM_OBJECT_CACHE_PAGES_MAXIMUM(); statistics.approximateObjectCacheSize = pmm.approximateTotalObjectCacheBytes; statistics.countZeroedPages = pmm.countZeroedPages; statistics.countFreePages = pmm.countFreePages; statistics.countStandbyPages = pmm.countStandbyPages; statistics.countActivePages = pmm.countActivePages; SYSCALL_WRITE(argument1, &statistics, sizeof(statistics)); } #ifdef DEBUG_BUILD if (argument0 == 1) { } else if (argument0 == 2) { KernelPanic("Debug command 2.\n"); } else if (argument0 == 4) { SYSCALL_BUFFER(argument1, 1, 0, false); if (_region0->data.normal.commitPageCount != (argument3 & 0x7FFFFFFFFFFFFFFF)) { KernelPanic("Commit page count mismatch.\n"); } #ifdef ES_BITS_64 if (_region0->data.normal.commit.Contains(argument2) != (argument3 >> 63)) { KernelPanic("Commit contains mismatch at %x.\n", argument1); } #endif } else if (argument0 == 6) { // SYSCALL_RETURN(DriversDebugGetEnumeratedPCIDevices((EsPCIDevice *) argument1, argument2), false); } else if (argument0 == 7) { EsAssert(!scheduler.threadEventLog); EsThreadEventLogEntry *buffer = (EsThreadEventLogEntry *) EsHeapAllocate(argument0 * sizeof(EsThreadEventLogEntry), false, K_FIXED); scheduler.threadEventLogAllocated = argument0; scheduler.threadEventLogPosition = 0; __sync_synchronize(); scheduler.threadEventLog = buffer; } else if (argument0 == 8) { SYSCALL_RETURN(scheduler.threadEventLogPosition, false); } else if (argument0 == 9) { SYSCALL_WRITE(argument1, scheduler.threadEventLog, scheduler.threadEventLogPosition * sizeof(EsThreadEventLogEntry)); } else if (argument0 == 10) { scheduler.threadEventLogAllocated = 0; // HACK Wait for threads to stop writing... KEvent event = {}; KEventWait(&event, 1000); EsHeapFree(scheduler.threadEventLog, 0, K_FIXED); scheduler.threadEventLog = nullptr; } #endif SYSCALL_RETURN(ES_SUCCESS, false); } const SyscallFunction syscallFunctions[ES_SYSCALL_COUNT + 1] { #include }; #pragma GCC diagnostic pop uintptr_t DoSyscall(EsSyscallType index, uintptr_t argument0, uintptr_t argument1, uintptr_t argument2, uintptr_t argument3, bool batched, bool *fatal, uintptr_t *userStackPointer) { // Interrupts need to be enabled during system calls, // because many of them block on mutexes or events. ProcessorEnableInterrupts(); Thread *currentThread = GetCurrentThread(); Process *currentProcess = currentThread->process; MMSpace *currentVMM = currentProcess->vmm; if (!batched) { if (currentThread->terminating) { // The thread has been terminated. // Yield the scheduler so it can be removed. ProcessorFakeTimerInterrupt(); } if (currentThread->terminatableState != THREAD_TERMINATABLE) { KernelPanic("DoSyscall - Current thread %x was not terminatable (was %d).\n", currentThread, currentThread->terminatableState); } currentThread->terminatableState = THREAD_IN_SYSCALL; } EsError returnValue = ES_FATAL_ERROR_UNKNOWN_SYSCALL; bool fatalError = true; if (index < ES_SYSCALL_COUNT) { SyscallFunction function = syscallFunctions[index]; if (batched && index == ES_SYSCALL_BATCH) { // This could cause a stack overflow, so it's a fatal error. } else if (function) { returnValue = (EsError) function(argument0, argument1, argument2, argument3, currentThread, currentProcess, currentVMM, userStackPointer, &fatalError); } } if (fatal) *fatal = false; if (fatalError) { if (fatal) { *fatal = true; } else { EsCrashReason reason; EsMemoryZero(&reason, sizeof(EsCrashReason)); reason.errorCode = (EsFatalError) returnValue; reason.duringSystemCall = index; KernelLog(LOG_ERROR, "Syscall", "syscall failure", "Process crashed during system call [%x, %x, %x, %x, %x]\n", index, argument0, argument1, argument2, argument3); #ifdef PAUSE_ON_USERLAND_CRASH currentProcess->pausedFromCrash = true; #else ProcessCrash(currentProcess, &reason); #endif } } if (!batched) { currentThread->terminatableState = THREAD_TERMINATABLE; if (currentThread->terminating || currentThread->paused) { // The thread has been terminated or paused. // Yield the scheduler so it can be removed or sent to the paused thread queue. ProcessorFakeTimerInterrupt(); } } return returnValue; } #endif