kernel cleanup 3

This commit is contained in:
nakst 2021-10-26 12:12:03 +01:00
parent 7a0b832c36
commit 3ca9b4724b
6 changed files with 253 additions and 275 deletions

View File

@ -98,23 +98,6 @@ void ACPIIoApicWriteRegister(ACPIIoApic *apic, uint32_t reg, uint32_t value) {
apic->address[4] = value;
}
uint32_t ACPILapicReadRegister(uint32_t reg) {
return acpi.lapicAddress[reg];
}
void ACPILapicWriteRegister(uint32_t reg, uint32_t value) {
acpi.lapicAddress[reg] = value;
}
void ACPILapicNextTimer(size_t ms) {
ACPILapicWriteRegister(0x320 >> 2, TIMER_INTERRUPT | (1 << 17));
ACPILapicWriteRegister(0x380 >> 2, acpi.lapicTicksPerMs * ms);
}
void ACPILapicEndOfInterrupt() {
ACPILapicWriteRegister(0xB0 >> 2, 0);
}
void ACPICheckTable(const ACPIDescriptorTable *table) {
if (!EsMemorySumBytes((uint8_t *) table, table->length)) {
return;
@ -126,71 +109,15 @@ void ACPICheckTable(const ACPIDescriptorTable *table) {
table->oemRevision, 4, &table->creatorID, table->creatorRevision);
}
#ifdef ARCH_X86_COMMON
uint64_t ArchGetTimeMs() {
// Update the time stamp counter synchronization value.
timeStampCounterSynchronizationValue = ((timeStampCounterSynchronizationValue & 0x8000000000000000)
^ 0x8000000000000000) | ProcessorReadTimeStamp();
if (acpi.hpetBaseAddress && acpi.hpetPeriod) {
__int128 fsToMs = 1000000000000;
__int128 reading = acpi.hpetBaseAddress[30];
return (uint64_t) (reading * (__int128) acpi.hpetPeriod / fsToMs);
} else {
return ArchGetTimeFromPITMs();
}
}
RootSystemDescriptorPointer *ACPIFindRootSystemDescriptorPointer() {
PhysicalMemoryRegion searchRegions[2];
searchRegions[0].baseAddress = (uintptr_t) (((uint16_t *) LOW_MEMORY_MAP_START)[0x40E] << 4) + LOW_MEMORY_MAP_START;
searchRegions[0].pageCount = 0x400;
searchRegions[1].baseAddress = (uintptr_t) 0xE0000 + LOW_MEMORY_MAP_START;
searchRegions[1].pageCount = 0x20000;
for (uintptr_t i = 0; i < 2; i++) {
for (uintptr_t address = searchRegions[i].baseAddress;
address < searchRegions[i].baseAddress + searchRegions[i].pageCount;
address += 16) {
RootSystemDescriptorPointer *rsdp = (RootSystemDescriptorPointer *) address;
if (rsdp->signature != SIGNATURE_RSDP) {
continue;
}
if (rsdp->revision == 0) {
if (EsMemorySumBytes((uint8_t *) rsdp, 20)) {
continue;
}
return rsdp;
} else if (rsdp->revision == 2) {
if (EsMemorySumBytes((uint8_t *) rsdp, sizeof(RootSystemDescriptorPointer))) {
continue;
}
return rsdp;
}
}
}
return nullptr;
}
#endif
void *ACPIMapPhysicalMemory(uintptr_t physicalAddress, size_t length) {
#ifdef ARCH_X86_COMMON
if ((uintptr_t) physicalAddress + (uintptr_t) length < (uintptr_t) LOW_MEMORY_LIMIT) {
return (void *) (LOW_MEMORY_MAP_START + physicalAddress);
}
#endif
void *address = MMMapPhysical(kernelMMSpace, physicalAddress, length, MM_REGION_NOT_CACHEABLE);
return address;
return MMMapPhysical(kernelMMSpace, physicalAddress, length, MM_REGION_NOT_CACHEABLE);
}
void KPS2SafeToInitialise() {
// This is only called when either:
// - the PCI driver determines there are no USB controllers
// - the USB controller disables USB emulation
// TODO Qemu sets this to true?
#if 0
if (acpi.ps2ControllerUnavailable) {
@ -198,10 +125,9 @@ void KPS2SafeToInitialise() {
}
#endif
// This is only called when either:
// - the PCI driver determines there are no USB controllers
// - the USB controller disables USB emulation
KThreadCreate("InitPS2", [] (uintptr_t) { KDeviceAttachByName(acpi.computer, "PS2"); });
KThreadCreate("InitPS2", [] (uintptr_t) {
KDeviceAttachByName(acpi.computer, "PS2");
});
}
void *ACPIGetRSDP() {
@ -212,14 +138,8 @@ uint8_t ACPIGetCenturyRegisterIndex() {
return acpi.centuryRegisterIndex;
}
void ArchInitialise() {
uint64_t uefiRSDP = *((uint64_t *) (LOW_MEMORY_MAP_START + GetBootloaderInformationOffset() + 0x7FE8));
if (!uefiRSDP) {
acpi.rsdp = ACPIFindRootSystemDescriptorPointer();
} else {
acpi.rsdp = (RootSystemDescriptorPointer *) MMMapPhysical(kernelMMSpace, (uintptr_t) uefiRSDP, 16384, ES_FLAGS_DEFAULT);
}
void ACPIParseTables() {
acpi.rsdp = (RootSystemDescriptorPointer *) MMMapPhysical(kernelMMSpace, ArchFindRootSystemDescriptorPointer(), 16384, ES_FLAGS_DEFAULT);
ACPIDescriptorTable *madtHeader = nullptr;
ACPIDescriptorTable *sdt = nullptr;
@ -315,8 +235,6 @@ void ArchInitialise() {
MMFree(kernelMMSpace, header);
}
// Set up the APIC.
MultipleAPICDescriptionTable *madt = (MultipleAPICDescriptionTable *) ((uint8_t *) madtHeader + ACPI_DESCRIPTOR_TABLE_HEADER_LENGTH);
if (!madt) {
@ -391,143 +309,6 @@ void ArchInitialise() {
" and LAPIC NMIs (%d/%d)\n",
acpi.processorCount, 256, acpi.ioapicCount, 16, acpi.interruptOverrideCount, 256, acpi.lapicNMICount, 32);
}
uint8_t bootstrapLapicID = (ACPILapicReadRegister(0x20 >> 2) >> 24);
ArchCPU *currentCPU = nullptr;
for (uintptr_t i = 0; i < acpi.processorCount; i++) {
if (acpi.processors[i].apicID == bootstrapLapicID) {
// That's us!
currentCPU = acpi.processors + i;
currentCPU->bootProcessor = true;
break;
}
}
if (!currentCPU) {
KernelPanic("ACPIInitialise - Could not find the bootstrap processor\n");
}
// Calibrate the LAPIC's timer and processor's timestamp counter.
ProcessorDisableInterrupts();
uint64_t start = ProcessorReadTimeStamp();
ACPILapicWriteRegister(0x380 >> 2, (uint32_t) -1);
for (int i = 0; i < 8; i++) ArchDelay1Ms(); // Average over 8ms
acpi.lapicTicksPerMs = ((uint32_t) -1 - ACPILapicReadRegister(0x390 >> 2)) >> 4;
EsRandomAddEntropy(ACPILapicReadRegister(0x390 >> 2));
uint64_t end = ProcessorReadTimeStamp();
timeStampTicksPerMs = (end - start) >> 3;
ProcessorEnableInterrupts();
// EsPrint("timeStampTicksPerMs = %d\n", timeStampTicksPerMs);
// Finish processor initialisation.
// This sets up interrupts, the timer, CPULocalStorage, the GDT and TSS,
// and registers the processor with the scheduler.
NewProcessorStorage storage = AllocateNewProcessorStorage(currentCPU);
SetupProcessor2(&storage);
}
void ACPIStartupApplicationProcessors() {
#ifdef USE_SMP
// TODO How do we know that this address is usable?
#define AP_TRAMPOLINE 0x10000
KEvent delay = {};
uint8_t *startupData = (uint8_t *) (LOW_MEMORY_MAP_START + AP_TRAMPOLINE);
// Put the trampoline code in memory.
EsMemoryCopy(startupData, (void *) ProcessorAPStartup, 0x1000); // Assume that the AP trampoline code <=4KB.
// Put the paging table location at AP_TRAMPOLINE + 0xFF0.
*((uint64_t *) (startupData + 0xFF0)) = ProcessorReadCR3();
// Put the 64-bit GDTR at AP_TRAMPOLINE + 0xFE0.
EsMemoryCopy(startupData + 0xFE0, (void *) processorGDTR, 0x10);
// Put the GDT at AP_TRAMPOLINE + 0x1000.
EsMemoryCopy(startupData + 0x1000, (void *) gdt_data, 0x1000);
// Put the startup flag at AP_TRAMPOLINE + 0xFC0
uint8_t volatile *startupFlag = (uint8_t *) (LOW_MEMORY_MAP_START + AP_TRAMPOLINE + 0xFC0);
// Temporarily identity map 2 pages in at 0x10000.
MMArchMapPage(kernelMMSpace, AP_TRAMPOLINE, AP_TRAMPOLINE, MM_MAP_PAGE_COMMIT_TABLES_NOW);
MMArchMapPage(kernelMMSpace, AP_TRAMPOLINE + 0x1000, AP_TRAMPOLINE + 0x1000, MM_MAP_PAGE_COMMIT_TABLES_NOW);
for (uintptr_t i = 0; i < acpi.processorCount; i++) {
ArchCPU *processor = acpi.processors + i;
if (processor->bootProcessor) continue;
// Allocate state for the processor.
NewProcessorStorage storage = AllocateNewProcessorStorage(processor);
// Clear the startup flag.
*startupFlag = 0;
// Put the stack at AP_TRAMPOLINE + 0xFD0, and the address of the NewProcessorStorage at AP_TRAMPOLINE + 0xFB0.
void *stack = (void *) ((uintptr_t) MMStandardAllocate(kernelMMSpace, 0x1000, MM_REGION_FIXED) + 0x1000);
*((void **) (startupData + 0xFD0)) = stack;
*((NewProcessorStorage **) (startupData + 0xFB0)) = &storage;
KernelLog(LOG_INFO, "ACPI", "starting processor", "Starting processor %d with local storage %x...\n", i, storage.local);
// Send an INIT IPI.
ProcessorDisableInterrupts(); // Don't be interrupted between writes...
ACPILapicWriteRegister(0x310 >> 2, processor->apicID << 24);
ACPILapicWriteRegister(0x300 >> 2, 0x4500);
ProcessorEnableInterrupts();
KEventWait(&delay, 10);
// Send a startup IPI.
ProcessorDisableInterrupts();
ACPILapicWriteRegister(0x310 >> 2, processor->apicID << 24);
ACPILapicWriteRegister(0x300 >> 2, 0x4600 | (AP_TRAMPOLINE >> K_PAGE_BITS));
ProcessorEnableInterrupts();
for (uintptr_t i = 0; i < 100 && *startupFlag == 0; i++) KEventWait(&delay, 1);
if (*startupFlag) {
// The processor started correctly.
} else {
// Send a startup IPI, again.
ProcessorDisableInterrupts();
ACPILapicWriteRegister(0x310 >> 2, processor->apicID << 24);
ACPILapicWriteRegister(0x300 >> 2, 0x4600 | (AP_TRAMPOLINE >> K_PAGE_BITS));
ProcessorEnableInterrupts();
for (uintptr_t i = 0; i < 1000 && *startupFlag == 0; i++) KEventWait(&delay, 1); // Wait longer this time.
if (*startupFlag) {
// The processor started correctly.
} else {
// The processor could not be started.
KernelLog(LOG_ERROR, "ACPI", "processor startup failure",
"ACPIInitialise - Could not start processor %d\n", processor->processorID);
continue;
}
}
// EsPrint("Startup flag 1 reached!\n");
for (uintptr_t i = 0; i < 10000 && *startupFlag != 2; i++) KEventWait(&delay, 1);
if (*startupFlag == 2) {
// The processor started!
} else {
// The processor did not report it completed initilisation, worringly.
// Don't let it continue.
KernelLog(LOG_ERROR, "ACPI", "processor startup failure",
"ACPIInitialise - Could not initialise processor %d\n", processor->processorID);
// TODO Send IPI to stop the processor.
}
}
// Remove the identity pages needed for the trampoline code.
MMArchUnmapPages(kernelMMSpace, AP_TRAMPOLINE, 2, ES_FLAGS_DEFAULT);
#endif
}
size_t KGetCPUCount() {
@ -558,7 +339,9 @@ void ACPIDeviceAttach(KDevice *parentDevice) {
#ifdef USE_ACPICA
ACPICAInitialise();
#endif
ACPIStartupApplicationProcessors();
#ifdef USE_SMP
ArchStartupApplicationProcessors();
#endif
});
if (!acpi.vgaControllerUnavailable) {

View File

@ -36,16 +36,7 @@ ES_EXTERN_C ACPI_STATUS AcpiOsTerminate() {
}
ES_EXTERN_C ACPI_PHYSICAL_ADDRESS AcpiOsGetRootPointer() {
ACPI_PHYSICAL_ADDRESS address = 0;
uint64_t uefiRSDP = *((uint64_t *) (LOW_MEMORY_MAP_START + GetBootloaderInformationOffset() + 0x7FE8));
if (uefiRSDP) {
return uefiRSDP;
}
AcpiFindRootPointer(&address);
return address;
return ArchFindRootSystemDescriptorPointer();
}
ES_EXTERN_C ACPI_STATUS AcpiOsPredefinedOverride(const ACPI_PREDEFINED_NAMES *predefinedObject, ACPI_STRING *newValue) {
@ -72,12 +63,6 @@ ES_EXTERN_C void *AcpiOsMapMemory(ACPI_PHYSICAL_ADDRESS physicalAddress, ACPI_SI
}
ES_EXTERN_C void AcpiOsUnmapMemory(void *address, ACPI_SIZE length) {
#ifdef ARCH_X86_COMMON
if ((uintptr_t) address - (uintptr_t) LOW_MEMORY_MAP_START < (uintptr_t) LOW_MEMORY_LIMIT) {
return;
}
#endif
(void) length;
MMFree(kernelMMSpace, address);
}

View File

@ -174,7 +174,7 @@ extern "C" {
// - MM_CORE_REGIONS_START and MM_CORE_REGIONS_COUNT.
// - MM_KERNEL_SPACE_START and MM_KERNEL_SPACE_SIZE.
// - MM_MODULES_START and MM_MODULES_SIZE.
// - ArchCheckBundleHeader, ArchCheckELFHeader and ArchIsAddressInKernelSpace.
// - ArchCheckBundleHeader and ArchCheckELFHeader.
// - K_ARCH_STACK_GROWS_DOWN or K_ARCH_STACK_GROWS_UP.
// - K_ARCH_NAME.
}

View File

@ -37,7 +37,6 @@ struct MMArchVAS {
#define ArchCheckBundleHeader() (header.mapAddress > 0x800000000000UL || header.mapAddress < 0x1000 || fileSize > 0x1000000000000UL)
#define ArchCheckELFHeader() (header->virtualAddress > 0x800000000000UL || header->virtualAddress < 0x1000 || header->segmentSize > 0x1000000000000UL)
#define ArchIsAddressInKernelSpace(x) ((uintptr_t) (x) >= 0xFFFF800000000000)
#define K_ARCH_STACK_GROWS_DOWN
#define K_ARCH_NAME "x86_64"
@ -50,6 +49,8 @@ struct MMArchVAS {
#define MM_CORE_SPACE_SIZE (0xFFFF8001F0000000 - 0xFFFF800100000000)
#define MM_USER_SPACE_START (0x100000000000)
#define MM_USER_SPACE_SIZE (0xF00000000000 - 0x100000000000)
#define LOW_MEMORY_MAP_START (0xFFFFFE0000000000)
#define LOW_MEMORY_LIMIT (0x100000000) // The first 4GB is mapped here.
struct MSIHandler {
KIRQHandler callback;
@ -96,6 +97,23 @@ volatile uintptr_t callFunctionOnAllProcessorsRemaining;
#define ENTRIES_PER_PAGE_TABLE (512)
#define ENTRIES_PER_PAGE_TABLE_BITS (9)
uint32_t LapicReadRegister(uint32_t reg) {
return acpi.lapicAddress[reg];
}
void LapicWriteRegister(uint32_t reg, uint32_t value) {
acpi.lapicAddress[reg] = value;
}
void LapicNextTimer(size_t ms) {
LapicWriteRegister(0x320 >> 2, TIMER_INTERRUPT | (1 << 17));
LapicWriteRegister(0x380 >> 2, acpi.lapicTicksPerMs * ms);
}
void LapicEndOfInterrupt() {
LapicWriteRegister(0xB0 >> 2, 0);
}
void ArchSetPCIIRQLine(uint8_t slot, uint8_t pin, uint8_t line) {
pciIRQLines[slot][pin] = line;
}
@ -207,8 +225,7 @@ bool MMArchMapPage(MMSpace *space, uintptr_t physicalAddress, uintptr_t virtualA
uintptr_t cr3 = space->data.cr3;
if (!ArchIsAddressInKernelSpace(virtualAddress)
&& ProcessorReadCR3() != cr3) {
if (virtualAddress < 0xFFFF800000000000 && ProcessorReadCR3() != cr3) {
KernelPanic("MMArchMapPage - Attempt to map page into other address space.\n");
} else if (!physicalAddress) {
KernelPanic("MMArchMapPage - Attempt to map physical page 0.\n");
@ -331,7 +348,7 @@ bool MMArchHandlePageFault(uintptr_t address, uint32_t flags) {
}
if (address < K_PAGE_SIZE) {
} else if (address >= LOW_MEMORY_MAP_START && address < LOW_MEMORY_MAP_START + 0x100000000 && forSupervisor) {
} else if (address >= LOW_MEMORY_MAP_START && address < LOW_MEMORY_MAP_START + LOW_MEMORY_LIMIT && forSupervisor) {
// We want to access a physical page within the first 4GB.
// This is used for device IO, so the page can't be cacheable.
MMArchMapPage(kernelMMSpace, address - LOW_MEMORY_MAP_START, address, MM_MAP_PAGE_NOT_CACHEABLE | MM_MAP_PAGE_COMMIT_TABLES_NOW);
@ -843,11 +860,11 @@ size_t ProcessorSendIPI(uintptr_t interrupt, bool nmi, int processorID) {
uint32_t destination = acpi.processors[i].apicID << 24;
uint32_t command = interrupt | (1 << 14) | (nmi ? 0x400 : 0);
ACPILapicWriteRegister(0x310 >> 2, destination);
ACPILapicWriteRegister(0x300 >> 2, command);
LapicWriteRegister(0x310 >> 2, destination);
LapicWriteRegister(0x300 >> 2, command);
// Wait for the interrupt to be sent.
while (ACPILapicReadRegister(0x300 >> 2) & (1 << 12));
while (LapicReadRegister(0x300 >> 2) & (1 << 12));
}
return ignored;
@ -864,7 +881,7 @@ void ProcessorSendYieldIPI(Thread *thread) {
void ArchNextTimer(size_t ms) {
while (!scheduler.started); // Wait until the scheduler is ready.
GetLocalStorage()->schedulerReady = true; // Make sure this CPU can be scheduled.
ACPILapicNextTimer(ms); // Set the next timer.
LapicNextTimer(ms); // Set the next timer.
}
NewProcessorStorage AllocateNewProcessorStorage(ArchCPU *archCPU) {
@ -888,19 +905,19 @@ void SetupProcessor2(NewProcessorStorage *storage) {
uint32_t value = 2 | (1 << 10); // NMI exception interrupt vector.
if (acpi.lapicNMIs[i].activeLow) value |= 1 << 13;
if (acpi.lapicNMIs[i].levelTriggered) value |= 1 << 15;
ACPILapicWriteRegister(registerIndex, value);
LapicWriteRegister(registerIndex, value);
}
}
ACPILapicWriteRegister(0x350 >> 2, ACPILapicReadRegister(0x350 >> 2) & ~(1 << 16));
ACPILapicWriteRegister(0x360 >> 2, ACPILapicReadRegister(0x360 >> 2) & ~(1 << 16));
ACPILapicWriteRegister(0x080 >> 2, 0);
if (ACPILapicReadRegister(0x30 >> 2) & 0x80000000) ACPILapicWriteRegister(0x410 >> 2, 0);
ACPILapicEndOfInterrupt();
LapicWriteRegister(0x350 >> 2, LapicReadRegister(0x350 >> 2) & ~(1 << 16));
LapicWriteRegister(0x360 >> 2, LapicReadRegister(0x360 >> 2) & ~(1 << 16));
LapicWriteRegister(0x080 >> 2, 0);
if (LapicReadRegister(0x30 >> 2) & 0x80000000) LapicWriteRegister(0x410 >> 2, 0);
LapicEndOfInterrupt();
// Configure the LAPIC's timer.
ACPILapicWriteRegister(0x3E0 >> 2, 2); // Divisor = 16
LapicWriteRegister(0x3E0 >> 2, 2); // Divisor = 16
// Create the processor's local storage.
@ -1136,7 +1153,7 @@ extern "C" void InterruptHandler(InterruptContext *context) {
__sync_fetch_and_sub(&callFunctionOnAllProcessorsRemaining, 1);
}
ACPILapicEndOfInterrupt();
LapicEndOfInterrupt();
} else if (interrupt >= INTERRUPT_VECTOR_MSI_START && interrupt < INTERRUPT_VECTOR_MSI_START + INTERRUPT_VECTOR_MSI_COUNT && local) {
KSpinlockAcquire(&irqHandlersLock);
MSIHandler handler = msiHandlers[interrupt - INTERRUPT_VECTOR_MSI_START];
@ -1149,7 +1166,7 @@ extern "C" void InterruptHandler(InterruptContext *context) {
handler.callback(interrupt - INTERRUPT_VECTOR_MSI_START, handler.context);
}
ACPILapicEndOfInterrupt();
LapicEndOfInterrupt();
if (local->irqSwitchThread && scheduler.started && local->schedulerReady) {
scheduler.Yield(context);
@ -1209,7 +1226,7 @@ extern "C" void InterruptHandler(InterruptContext *context) {
GetLocalStorage()->inIRQ = false;
}
ACPILapicEndOfInterrupt();
LapicEndOfInterrupt();
if (local->irqSwitchThread && scheduler.started && local->schedulerReady) {
scheduler.Yield(context);
@ -1241,7 +1258,7 @@ extern "C" bool PostContextSwitch(InterruptContext *context, MMSpace *oldAddress
KernelLog(LOG_VERBOSE, "Arch", "executing new thread", "Executing new thread %x at %x\n", currentThread, context->rip);
}
ACPILapicEndOfInterrupt();
LapicEndOfInterrupt();
ContextSanityCheck(context);
if (ProcessorAreInterruptsEnabled()) {
@ -1361,4 +1378,200 @@ uintptr_t MMArchGetPhysicalMemoryHighest() {
return physicalMemoryHighest;
}
void ArchStartupApplicationProcessors() {
// TODO How do we know that this address is usable?
#define AP_TRAMPOLINE 0x10000
KEvent delay = {};
uint8_t *startupData = (uint8_t *) (LOW_MEMORY_MAP_START + AP_TRAMPOLINE);
// Put the trampoline code in memory.
EsMemoryCopy(startupData, (void *) ProcessorAPStartup, 0x1000); // Assume that the AP trampoline code <=4KB.
// Put the paging table location at AP_TRAMPOLINE + 0xFF0.
*((uint64_t *) (startupData + 0xFF0)) = ProcessorReadCR3();
// Put the 64-bit GDTR at AP_TRAMPOLINE + 0xFE0.
EsMemoryCopy(startupData + 0xFE0, (void *) processorGDTR, 0x10);
// Put the GDT at AP_TRAMPOLINE + 0x1000.
EsMemoryCopy(startupData + 0x1000, (void *) gdt_data, 0x1000);
// Put the startup flag at AP_TRAMPOLINE + 0xFC0
uint8_t volatile *startupFlag = (uint8_t *) (LOW_MEMORY_MAP_START + AP_TRAMPOLINE + 0xFC0);
// Temporarily identity map 2 pages in at 0x10000.
MMArchMapPage(kernelMMSpace, AP_TRAMPOLINE, AP_TRAMPOLINE, MM_MAP_PAGE_COMMIT_TABLES_NOW);
MMArchMapPage(kernelMMSpace, AP_TRAMPOLINE + 0x1000, AP_TRAMPOLINE + 0x1000, MM_MAP_PAGE_COMMIT_TABLES_NOW);
for (uintptr_t i = 0; i < acpi.processorCount; i++) {
ArchCPU *processor = acpi.processors + i;
if (processor->bootProcessor) continue;
// Allocate state for the processor.
NewProcessorStorage storage = AllocateNewProcessorStorage(processor);
// Clear the startup flag.
*startupFlag = 0;
// Put the stack at AP_TRAMPOLINE + 0xFD0, and the address of the NewProcessorStorage at AP_TRAMPOLINE + 0xFB0.
void *stack = (void *) ((uintptr_t) MMStandardAllocate(kernelMMSpace, 0x1000, MM_REGION_FIXED) + 0x1000);
*((void **) (startupData + 0xFD0)) = stack;
*((NewProcessorStorage **) (startupData + 0xFB0)) = &storage;
KernelLog(LOG_INFO, "ACPI", "starting processor", "Starting processor %d with local storage %x...\n", i, storage.local);
// Send an INIT IPI.
ProcessorDisableInterrupts(); // Don't be interrupted between writes...
LapicWriteRegister(0x310 >> 2, processor->apicID << 24);
LapicWriteRegister(0x300 >> 2, 0x4500);
ProcessorEnableInterrupts();
KEventWait(&delay, 10);
// Send a startup IPI.
ProcessorDisableInterrupts();
LapicWriteRegister(0x310 >> 2, processor->apicID << 24);
LapicWriteRegister(0x300 >> 2, 0x4600 | (AP_TRAMPOLINE >> K_PAGE_BITS));
ProcessorEnableInterrupts();
for (uintptr_t i = 0; i < 100 && *startupFlag == 0; i++) KEventWait(&delay, 1);
if (*startupFlag) {
// The processor started correctly.
} else {
// Send a startup IPI, again.
ProcessorDisableInterrupts();
LapicWriteRegister(0x310 >> 2, processor->apicID << 24);
LapicWriteRegister(0x300 >> 2, 0x4600 | (AP_TRAMPOLINE >> K_PAGE_BITS));
ProcessorEnableInterrupts();
for (uintptr_t i = 0; i < 1000 && *startupFlag == 0; i++) KEventWait(&delay, 1); // Wait longer this time.
if (*startupFlag) {
// The processor started correctly.
} else {
// The processor could not be started.
KernelLog(LOG_ERROR, "ACPI", "processor startup failure",
"ACPIInitialise - Could not start processor %d\n", processor->processorID);
continue;
}
}
// EsPrint("Startup flag 1 reached!\n");
for (uintptr_t i = 0; i < 10000 && *startupFlag != 2; i++) KEventWait(&delay, 1);
if (*startupFlag == 2) {
// The processor started!
} else {
// The processor did not report it completed initilisation, worringly.
// Don't let it continue.
KernelLog(LOG_ERROR, "ACPI", "processor startup failure",
"ACPIInitialise - Could not initialise processor %d\n", processor->processorID);
// TODO Send IPI to stop the processor.
}
}
// Remove the identity pages needed for the trampoline code.
MMArchUnmapPages(kernelMMSpace, AP_TRAMPOLINE, 2, ES_FLAGS_DEFAULT);
}
uint64_t ArchGetTimeMs() {
// Update the time stamp counter synchronization value.
timeStampCounterSynchronizationValue = ((timeStampCounterSynchronizationValue & 0x8000000000000000)
^ 0x8000000000000000) | ProcessorReadTimeStamp();
if (acpi.hpetBaseAddress && acpi.hpetPeriod) {
__int128 fsToMs = 1000000000000;
__int128 reading = acpi.hpetBaseAddress[30];
return (uint64_t) (reading * (__int128) acpi.hpetPeriod / fsToMs);
} else {
return ArchGetTimeFromPITMs();
}
}
uintptr_t ArchFindRootSystemDescriptorPointer() {
uint64_t uefiRSDP = *((uint64_t *) (LOW_MEMORY_MAP_START + GetBootloaderInformationOffset() + 0x7FE8));
if (uefiRSDP) {
return uefiRSDP;
}
PhysicalMemoryRegion searchRegions[2];
searchRegions[0].baseAddress = (uintptr_t) (((uint16_t *) LOW_MEMORY_MAP_START)[0x40E] << 4) + LOW_MEMORY_MAP_START;
searchRegions[0].pageCount = 0x400;
searchRegions[1].baseAddress = (uintptr_t) 0xE0000 + LOW_MEMORY_MAP_START;
searchRegions[1].pageCount = 0x20000;
for (uintptr_t i = 0; i < 2; i++) {
for (uintptr_t address = searchRegions[i].baseAddress;
address < searchRegions[i].baseAddress + searchRegions[i].pageCount;
address += 16) {
RootSystemDescriptorPointer *rsdp = (RootSystemDescriptorPointer *) address;
if (rsdp->signature != SIGNATURE_RSDP) {
continue;
}
if (rsdp->revision == 0) {
if (EsMemorySumBytes((uint8_t *) rsdp, 20)) {
continue;
}
return (uintptr_t) rsdp - LOW_MEMORY_MAP_START;
} else if (rsdp->revision == 2) {
if (EsMemorySumBytes((uint8_t *) rsdp, sizeof(RootSystemDescriptorPointer))) {
continue;
}
return (uintptr_t) rsdp - LOW_MEMORY_MAP_START;
}
}
}
return 0;
}
void ArchInitialise() {
ACPIParseTables();
uint8_t bootstrapLapicID = (LapicReadRegister(0x20 >> 2) >> 24);
ArchCPU *currentCPU = nullptr;
for (uintptr_t i = 0; i < acpi.processorCount; i++) {
if (acpi.processors[i].apicID == bootstrapLapicID) {
// That's us!
currentCPU = acpi.processors + i;
currentCPU->bootProcessor = true;
break;
}
}
if (!currentCPU) {
KernelPanic("ACPIInitialise - Could not find the bootstrap processor\n");
}
// Calibrate the LAPIC's timer and processor's timestamp counter.
ProcessorDisableInterrupts();
uint64_t start = ProcessorReadTimeStamp();
LapicWriteRegister(0x380 >> 2, (uint32_t) -1);
for (int i = 0; i < 8; i++) ArchDelay1Ms(); // Average over 8ms
acpi.lapicTicksPerMs = ((uint32_t) -1 - LapicReadRegister(0x390 >> 2)) >> 4;
EsRandomAddEntropy(LapicReadRegister(0x390 >> 2));
uint64_t end = ProcessorReadTimeStamp();
timeStampTicksPerMs = (end - start) >> 3;
ProcessorEnableInterrupts();
// EsPrint("timeStampTicksPerMs = %d\n", timeStampTicksPerMs);
// Finish processor initialisation.
// This sets up interrupts, the timer, CPULocalStorage, the GDT and TSS,
// and registers the processor with the scheduler.
NewProcessorStorage storage = AllocateNewProcessorStorage(currentCPU);
SetupProcessor2(&storage);
}
#endif

View File

@ -1,9 +1,6 @@
#ifndef ARCH_X86_64_HEADER
#define ARCH_X86_64_HEADER
#define LOW_MEMORY_MAP_START (0xFFFFFE0000000000)
#define LOW_MEMORY_LIMIT (0x100000) // The first 1MB is mapped here.
// --------------------------------- Standardised IO ports.
#define IO_PIC_1_COMMAND (0x0020)
@ -108,6 +105,8 @@ void *ACPIGetRSDP();
uint8_t ACPIGetCenturyRegisterIndex();
size_t ProcessorSendIPI(uintptr_t interrupt, bool nmi = false, int processorID = -1); // Returns the number of processors the IPI was *not* sent to.
void ArchSetPCIIRQLine(uint8_t slot, uint8_t pin, uint8_t line);
uintptr_t ArchFindRootSystemDescriptorPointer();
void ArchStartupApplicationProcessors();
struct InterruptContext {
uint64_t cr2, ds;

View File

@ -412,22 +412,20 @@ EnableAPIC:
; Since we're on AMD64, we know that the APIC will be present.
mov ecx,0x1B
rdmsr
or eax,0x800
wrmsr
and eax,~0xFFF
mov edi,eax
test eax,1 << 8
jne $
or eax,0x900
wrmsr
; Set the spurious interrupt vector to 0xFF
mov rax,0xFFFFFE00000000F0
mov rax,0xFFFFFE00000000F0 ; LOW_MEMORY_MAP_START + 0xF0
add rax,rdi
mov ebx,[rax]
or ebx,0x1FF
mov [rax],ebx
; Use the flat processor addressing model
mov rax,0xFFFFFE00000000E0
mov rax,0xFFFFFE00000000E0 ; LOW_MEMORY_MAP_START + 0xE0
add rax,rdi
mov dword [rax],0xFFFFFFFF