actix-net/actix-threadpool/src/lib.rs

131 lines
3.9 KiB
Rust

//! Thread pool for blocking operations
//!
//! The pool would lazily generate thread according to the workload and spawn up to a total amount
//! of you machine's `logical CPU cores * 5` threads. Any spawned threads kept idle for 3 minutes
//! would be recycled and de spawned.
//!
//! # Example:
//! ```rust
//! #[actix_rt::main]
//! async fn main() {
//! // Optional: Set the max thread count for the blocking pool.
//! std::env::set_var("ACTIX_THREADPOOL", "30");
//! // Optional: Set the timeout duration IN SECONDS for the blocking pool's idle threads.
//! std::env::set_var("ACTIX_THREADPOOL_TIMEOUT", "300");
//!
//! let future = actix_threadpool::run(|| {
//! /* Some blocking code with a Result<T, E> as return type */
//! Ok::<usize, ()>(1usize)
//! });
//!
//! // calling actix::web::block(|| {}) would have the same functionality.
//!
//! /*
//! We can await on this blocking code and NOT block our runtime.
//! When we waiting our actix runtime can switch to other async tasks.
//! */
//!
//! let result: Result<usize, actix_threadpool::BlockingError<()>> = future.await;
//!
//! assert_eq!(1usize, result.unwrap())
//! }
//! ```
use std::fmt;
use std::future::Future;
use std::pin::Pin;
use std::task::{Context, Poll};
use std::time::Duration;
use derive_more::Display;
use futures_channel::oneshot;
use jian_rs::ThreadPool;
/// Env variable for default cpu pool size.
const ENV_MAX_THREADS: &str = "ACTIX_THREADPOOL";
/// Env variable for default thread idle timeout duration.
const ENV_IDLE_TIMEOUT: &str = "ACTIX_THREADPOOL_TIMEOUT";
lazy_static::lazy_static! {
pub(crate) static ref POOL: ThreadPool = {
let num = std::env::var(ENV_MAX_THREADS)
.map_err(|_| ())
.and_then(|val| {
val.parse().map_err(|_| log::warn!(
"Can not parse {} value, using default",
ENV_MAX_THREADS,
))
})
.unwrap_or_else(|_| num_cpus::get() * 5);
let dur = std::env::var(ENV_IDLE_TIMEOUT)
.map_err(|_| ())
.and_then(|val| {
val.parse().map_err(|_| log::warn!(
"Can not parse {} value, using default",
ENV_IDLE_TIMEOUT,
))
})
.unwrap_or_else(|_| 60 * 5);
ThreadPool::builder()
.thread_name("actix-threadpool")
.max_threads(num)
.min_threads(1)
.idle_timeout(Duration::from_secs(dur))
.build()
};
}
/// Blocking operation execution error
#[derive(Debug, Display)]
pub enum BlockingError<E: fmt::Debug> {
#[display(fmt = "{:?}", _0)]
Error(E),
#[display(fmt = "Thread pool is gone")]
Canceled,
}
impl<E: fmt::Debug> std::error::Error for BlockingError<E> {}
/// Execute blocking function on a thread pool, returns future that resolves
/// to result of the function execution.
pub fn run<F, I, E>(f: F) -> CpuFuture<I, E>
where
F: FnOnce() -> Result<I, E> + Send + 'static,
I: Send + 'static,
E: Send + fmt::Debug + 'static,
{
let (tx, rx) = oneshot::channel();
let _ = POOL.execute(move || {
if !tx.is_canceled() {
let _ = tx.send(f());
}
});
CpuFuture { rx }
}
/// Blocking operation completion future. It resolves with results
/// of blocking function execution.
pub struct CpuFuture<I, E> {
rx: oneshot::Receiver<Result<I, E>>,
}
impl<I, E: fmt::Debug> Future for CpuFuture<I, E> {
type Output = Result<I, BlockingError<E>>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let rx = Pin::new(&mut self.rx);
let res = match rx.poll(cx) {
Poll::Pending => return Poll::Pending,
Poll::Ready(res) => res
.map_err(|_| BlockingError::Canceled)
.and_then(|res| res.map_err(BlockingError::Error)),
};
Poll::Ready(res)
}
}